低応力電気光学スイッチによる高エネルギーパルスの安定生成(Stable High-energy Pulses Achieved with Low-stress Electro-optic Switch)

2026-02-04 中国科学院(CAS)

中国科学院の合肥物質科学研究院の張天舒教授率いる研究チームは、大口径β-ホウ酸バリウム(BBO)結晶を用いた低応力電気光学スイッチを開発し、Nd:YAGハイブリッド共振器型Innoslabレーザーに組み込むことで、安定した高エネルギーパルス発生を実現した。低応力パッケージ設計と電場均一性の向上により、変調性能と動作安定性が大きく改善された。さらに、安定・不安定ハイブリッド共振器構成や励起光と結晶、Qスイッチの最適整合により、熱効果を抑制し、回折限界に近いビーム品質を維持した。本成果は、高繰り返し高エネルギーレーザーや衛星搭載LiDARなどへの応用を可能にする重要な技術的前進である。

低応力電気光学スイッチによる高エネルギーパルスの安定生成(Stable High-energy Pulses Achieved with Low-stress Electro-optic Switch)
Schematic of hybrid Innoslab laser system. (a) continuous-wave pumping. (b) Pulsed pumping. (Image by CHEN Jinxin)

<関連情報>

スラブBBOポッケルスセルに基づく、回折限界に近い高エネルギーの電気光学的QスイッチNd:YAG Innoslabレーザー Near-diffraction-limited, high-energy, electro-optically Q-switched Nd:YAG Innoslab laser based on a slab BBO Pockels cell

Jinxin Chen, Gang Cheng, Yajun Wu, Xi Chen, Xiaonan Zhao, Huihui Gao, Linhao Shang, Pan Liu, Yibin Fu, Guangqiang Fan, Tianshu Zhang, Xinhui Sun, and Wenqing Liu
Optics Express  Published: January 13, 2026
DOI:https://doi.org/10.1364/OE.582984

Abstract

For Pockels cells required by high-energy lasers, the current mainstream design adopts a square aperture. Pockels cells assembled with slab-shaped electro-optic crystals are a more suitable choice for Nd:YAG Innoslab hybrid cavities that directly output large single-pulse energies or for ring-cavity regenerative amplifiers with large cavity-mode size. This study constructs a Pockels cell using a single large slab-shaped BBO crystal, focusing on enhancing electric field uniformity within the crystal and reducing assembly stress, thereby achieving consistent optical field modulation across the entire aperture. The experiment first tested the extinction ratio, conoscopic interference pattern, and extracavity modulation characteristics of the electro-optic switch. The developed Pockels cell was then applied to a continuously pumped and pulsed-pumped Nd:YAG hybrid cavity laser. During continuous pumping, we attained an output power of 37.54 W, a repetition rate of 2 kHz, and a pulse width of 6.5 ns. During the pulsed pump, we also obtained an output energy of 21.3 mJ with a repetition rate of 100 Hz and a pulse width of 7.77 ns. Both of these results exhibited near-diffraction-limited beam output. Given the performance verification of the proposed packaging in our work, we expect this high-performance Pockels cell to provide support for the advancement of integrated optical laser systems and high-resolution metrology.

0403電子応用
ad
ad
Follow
ad
タイトルとURLをコピーしました