光を100倍増幅する超小型光学アンプを開発 (New Chip-Sized Optical Amplifier Can Intensify Light 100 Times)

2026-01-28 スタンフォード大学

スタンフォード大学の研究チームは、極めて低消費電力で動作する新しい光増幅器を開発し、バイオセンシングやデータ通信分野への応用可能性を示した。本研究では、光と物質の相互作用を精密に制御することで、従来よりもはるかに少ないエネルギーで微弱な光信号を増幅できる仕組みを実現した。これにより、生体分子の検出に必要な高感度光計測や、データセンターや光通信におけるエネルギー消費の大幅削減が期待される。特に、熱雑音を抑えつつ高い信号対雑音比を維持できる点が特徴で、集積フォトニクスとの親和性も高い。今回の成果は、低消費電力・高効率な次世代光デバイス開発に道を開き、持続可能な情報通信技術や医療・生命科学計測の発展に貢献すると期待されている。

光を100倍増幅する超小型光学アンプを開発 (New Chip-Sized Optical Amplifier Can Intensify Light 100 Times)
Close up of an optical amplifier chip, similar to the one detailed in a new study, that is being developed in the lab of Stanford physicist Amir Safavi-Naeini. A red laser light shines from an optical fiber on the left to help with aligning the fiber to the chip. | Jim Gensheimer for Stanford University

<関連情報>

第二高調波共鳴による低電力集積光増幅 Low-power integrated optical amplification through second-harmonic resonance

Devin J. Dean,Taewon Park,Hubert S. Stokowski,Luke Qi,Sam Robison,Alexander Y. Hwang,Jason F. Herrmann,Martin M. Fejer & Amir H. Safavi-Naeini
Nature  Published:28 January 2026
DOI:https://doi.org/10.1038/s41586-025-09959-z

Abstract

Optical amplifiers are fundamental to modern photonics, enabling long-distance communications1, precision sensing2,3 and quantum information processing4,5. Erbium-doped amplifiers dominate telecommunications but are restricted to specific wavelength bands1,6, whereas semiconductor amplifiers offer broader coverage but suffer from high noise and nonlinear distortions7. Optical parametric amplifiers (OPAs) promise broadband, quantum-limited amplification across arbitrary wavelengths8. However, their miniaturization and deployment have been hampered by watt-level power requirements. Here we demonstrate an integrated OPA on thin-film lithium niobate that achieves >17 dB gain with <200 mW input power—an order of magnitude improvement over previous demonstrations. Our second-harmonic-resonant design enhances both pump generation efficiency (95% conversion) and pump power utilization through recirculation, without sacrificing bandwidth. The resonant architecture increases the effective pump power by nearly an order of magnitude compared with conventional single-pass designs, while also multiplexing the signal and pump. We demonstrate flat near-quantum-limited noise performance over 110 nm. Our low-power architecture enables practical on-chip OPAs for next-generation quantum and classical photonics.

0403電子応用
ad
ad
Follow
ad
タイトルとURLをコピーしました