AIを用いた山岳積雪・水量予測モデルを開発 (Mountain snow and water forecasting tool developed by WSU researchers)

2026-01-27 ワシントン州立大学(WSU)

米国ワシントン州立大学(WSU)の研究者らは、山岳地域の積雪とその水資源への影響を高精度で予測する新しい予報ツールを開発した。このツールは人工知能(AI)を活用し、積雪水分量(snow-water equivalent)を日次・週次で予測することで、雪解けがもたらす水供給量の変動をより正確に見積もることができるようにする。従来の予測手法は気象条件や地形の影響を十分に捉えられず、予測精度に限界があったが、AIモデルは複雑な地形や季節変動を学習し、短期の変動や不確実性も織り込んだ予測が可能となる。これにより、洪水リスク評価、夏季の灌漑計画、ダム運用、電力供給、水資源管理などの意思決定を支援できると期待されている。山岳域の水供給は春から夏にかけての地域社会と経済活動に不可欠であり、それに伴うリスク管理や資源配分の最適化にも貢献する基盤技術である。

AIを用いた山岳積雪・水量予測モデルを開発 (Mountain snow and water forecasting tool developed by WSU researchers)
A snow monitoring station on Mount Eyak, above the coastal town of Cordova, Alaska (photo by Daniel Fisher, USDA).

<関連情報>

ForeSWE: 不確実性を考慮した注意モデルによる積雪水量当量の予測 ForeSWE: Forecasting Snow-Water Equivalent with an Uncertainty-Aware Attention Model

Krishu K Thapa, Supriya Savalkar, Bhupinderjeet Singh, Trong Nghia Hoang, Kirti Rajagopalan, Ananth Kalyanaraman
arXiv  Submitted on 12 Nov 2025
DOI:https://doi.org/10.48550/arXiv.2511.08856

Abstract

Various complex water management decisions are made in snow-dominant watersheds with the knowledge of Snow-Water Equivalent (SWE) — a key measure widely used to estimate the water content of a snowpack. However, forecasting SWE is challenging because SWE is influenced by various factors including topography and an array of environmental conditions, and has therefore been observed to be spatio-temporally variable. Classical approaches to SWE forecasting have not adequately utilized these spatial/temporal correlations, nor do they provide uncertainty estimates — which can be of significant value to the decision maker. In this paper, we present ForeSWE, a new probabilistic spatio-temporal forecasting model that integrates deep learning and classical probabilistic techniques. The resulting model features a combination of an attention mechanism to integrate spatiotemporal features and interactions, alongside a Gaussian process module that provides principled quantification of prediction uncertainty. We evaluate the model on data from 512 Snow Telemetry (SNOTEL) stations in the Western US. The results show significant improvements in both forecasting accuracy and prediction interval compared to existing approaches. The results also serve to highlight the efficacy in uncertainty estimates between different approaches. Collectively, these findings have provided a platform for deployment and feedback by the water management community.

1702地球物理及び地球化学
ad
ad
Follow
ad
タイトルとURLをコピーしました