単一細胞レベルでビール発酵をモニタリングする新しいラマン法を開発(Scientists Develop Novel Raman Method to Monitor Beer Fermentation at Single-Cell Level)

2026-01-14 中国科学院(CAS)

ビール醸造における発酵管理は、従来、培養液中の成分をクロマトグラフィーで分析する方法が主流であったが、時間がかかり、平均的なバッチ情報しか得られない課題があった。中国科学院・青島生物能源与生物過程研究所(QIBEBT)の研究チームは、単一酵母細胞を対象とした自発ラマン分光法に基づく新手法「プロセス・ラマノミクス」を開発し、発酵状態を迅速かつ非標識で評価することに成功した。本研究では、ラガー酵母Saccharomyces pastorianusを用いた8日間の工業的ビール発酵を追跡し、単一細胞ラマンスペクトルと培地中の43種の代謝指標を対応付けた。その結果、19の外部代謝指標(高級アルコール、エステル、糖類、有機酸など)を高精度で予測可能であることが示された。さらに、細胞間の代謝不均一性の時間変化を可視化し、不均一性が発酵状態の新たな指標となる可能性を示した。本手法は発酵プロセスの高度化と品質管理の革新に寄与すると期待される。

単一細胞レベルでビール発酵をモニタリングする新しいラマン法を開発(Scientists Develop Novel Raman Method to Monitor Beer Fermentation at Single-Cell Level)
Overview of “process ramanomics”. Single-cell Raman fingerprints collected across fermentation provide a fast, label-free window into brewing progress with single-cell resolution. (Image by LIU Yang)

<関連情報>

ビール発酵中の細胞外および細胞内代謝産物の生成と相互変換をラマノミクスで追跡 Tracking production and interconversion of extra- and intra-cellular metabolites during beer fermentation by ramanomics

Yang He, Yuehui He, Yuanyuan Zhou, Xunrong Li, Xinran Zhang, Yuetong Ji, Junhong Yu, Jian Xu
Bioresource Technology  Available online: 9 December 2025
DOI:https://doi.org/10.1016/j.biortech.2025.133788

Highlights

  • Single-Cell Raman Spectrum (SCRS) enables measurement of intracellular metabolites in individual beer yeast cells.
  • The contents of extracellular metabolites of individual beer yeast can be modelled at single-cell resolution by SCRS.
  • Ramanome analysis facilitates real-time monitoring of population heterogeneity in beer yeast during fermentation.
  • Intra-Ramanome Correlation Analysis (IRCA) reveals potential interconversions of extra- and intra-cellular metabolites.

Abstract

Cellular metabolic state and its heterogeneity are pivotal features that determine fermentation productivity, yet label-free monitoring has generally been difficult. Employing beer fermentation by Saccharomyces pastorianus as a model, we demonstrated that temporal sampling of ramanomes, the collection of spontaneous Single-Cell Raman Spectra (SCRS) from an isogenic population, provides rich insights into the profiles and inter-conversion of both intra- and extra-cellular metabolites. Among 43 extracellular metabolic phenotypes, ramanomes successfully modeled 19 of them, including the extracellular levels of four alcohols, four esters, four amino acids, two acids, and four mono- and di-saccharide substrates, plus the alcohol-to-ester ratio. Moreover, Intra-Ramanome Correlation Analysis (IRCA) revealed potential metabolic interactions in pairs of intracellular metabolites, extracellular metabolites, and medium substrates. Specifically, carbohydrates were the most active intracellular metabolites, while proteins significantly influenced alcohol and ester synthesis on Day 1 of fermentation. Additionally, both alcohols and esters showed negative correlations with extracellular amino acids and acids. The global-IRCN average degree, reflecting metabolic network complexity, increased over time and was positively correlated with extracellular levels of key products such as n-propanol and various esters, while negatively correlated with acetic acid and certain sugars. Therefore, by enabling non-destructive, label-free, and rapid modeling of both intra- and extracellular metabolite levels, ramanomics can find wide applications in process monitoring and control.

0500化学一般
ad
ad
Follow
ad
タイトルとURLをコピーしました