新しい光学チップは生成AIの進歩に役立つ可能性がある(New optical chip can help advance generative AI)

2025-12-31  上海交通大学 (SJTU)

上海交通大学は、生成AI向けに大規模モデルを実行可能な全光学計算チップ「LightGen」を開発したと発表した。光を用いて情報処理を行う同チップは、数百万の光学ニューロン統合、全光学的な次元変換、教師データに依存しない学習アルゴリズムという三つの技術的課題を同時に克服し、意味理解から生成までをエンドツーエンドで実現する。画像・3D・高精細動画生成など多様な生成タスクに対応し、既存の電子型AIモデルと同等の品質を保ちながら、計算性能とエネルギー効率で最大数桁の向上を示した。生成AI時代における次世代高効率計算基盤として注目される。

<関連情報>

大規模インテリジェントセマンティックビジョン生成のための全光合成チップ All-optical synthesis chip for large-scale intelligent semantic vision generation

Yitong Chen https://orcid.org/0000-0003-4207-4959, Xinyue Sun https://orcid.org/0009-0008-0529-4323, Longtao Tan, Yizhou Jiang, […] , and Guangtao Zhai
Science  Published:18 Dec 2025
DOI:https://doi.org/10.1126/science.adv7434

Editor’s summary

Despite extensive research on optical computing in recent years, there has been limited progress in directly addressing leading-edge artificial intelligence (AI) practical applications. This is especially true for large-scale models, which have the potential to radically change society but at the same time face severe shortages of computing power and energy. By integrating millions of photonic neurons and varying the network dimension at light speed through proposed optical latent space and Bayes-based training algorithms, Chen et al. developed an all-optical chip that was able to experimentally implement large-scale cutting-edge AI tasks of generative models and semantic manipulation of complicated colorful images with impressive speed and energy efficiency compared with state-of-the-art electronic and photonic chips. —Yury Suleymanov

Abstract

Large-scale generative artificial intelligence (AI) is facing a severe computing power shortage. Although photonic computing achieves excellence in decision tasks, its application in generative tasks remains formidable because of limited integration scale, time-consuming dimension conversions, and ground-truth-dependent training algorithms. We produced an all-optical chip for large-scale intelligent vision generation, named LightGen. By integrating millions of photonic neurons on a chip, varying network dimension through proposed optical latent space, and Bayes-based training algorithms, LightGen experimentally implemented high-resolution semantic image generation, denoising, style transfer, three-dimensional generation, and manipulation. Its measured end-to-end computing speed and energy efficiency were each more than two orders of magnitude greater than those of state-of-the-art electronic chips, paving the way for acceleration of large visual generative models.

0403電子応用
ad
ad
Follow
ad
タイトルとURLをコピーしました