巨大地震に耐える新鋼材:優れた耐久性と変形の仕組みを解明 〜 溶接性×疲労耐久性を両立した新鋼材の、疲労特性の理解を深化〜

2025-12-22 物質・材料研究機構

NIMS(国立研究開発法人物質・材料研究機構)は、巨大地震に耐える鋼材ダンパー向けに開発した新鋼材「第二世代FMS合金(Fe-Mn-Si系)」の変形・疲労メカニズムを解明した。鋼材ダンパーは地震時の繰り返し変形に耐える疲労耐久性が重要であり、特に巨大地震では小変形から大変形まで安定した性能が求められる。本研究では幅広い全ひずみ振幅条件で疲労試験を実施した結果、FMS合金は一般鋼材に比べ、巨大地震を想定した条件下で最大約20倍の疲労寿命を示すことが確認された。さらに、破断に至るまで緩やかに続く硬化挙動が、結晶構造の段階的変化と組織微細化に起因することを明らかにした。これらの成果は、鋼材ダンパーの長寿命化・高耐力化・汎用性向上につながり、巨大地震に備えた安全で強靭な都市インフラ実現に大きく貢献する。

巨大地震に耐える新鋼材:優れた耐久性と変形の仕組みを解明 〜 溶接性×疲労耐久性を両立した新鋼材の、疲労特性の理解を深化〜
図: 変形の大きさ(全ひずみ振幅)と耐久性(疲労寿命)の関係 : 新鋼材である第二世代FMS合金は優れた耐久性を有する。

<関連情報>

Fe–15Mn–11Cr–7.5Ni–4Si合金の低サイクル疲労と微細組織 Low cycle fatigue and microstructures of Fe–15Mn–11Cr–7.5Ni–4Si alloy

Fumiyoshi Yoshinaka, Takahiro Sawaguchi, Tomoya Nagira, Susumu Takamori, Satoshi Emura, Yasuhiko Inoue
Materials Science and Engineering: A  Available online: 19 November 2025
DOI:https://doi.org/10.1016/j.msea.2025.149457

Highlights

  • Low cycle fatigue testing and microstructural analysis on Fe–15Mn–11Cr–7.5Ni–4Si.
  • It had longer fatigue life than conventional and TRIP/TWIP steels.
  • Rapid cyclic hardening was associated with multiple slips in γ-austenite.
  • Gradual hardening was linked to sluggish ε-martensite formation until fracture.
  • It had both good fatigue durability and reduced risk of solidification cracking.

Abstract

This paper is an investigation of the fatigue behavior and microstructural evolution of Fe–15Mn–11Cr–7.5Ni–4Si (X05) austenitic steel, developed from Fe–15Mn–10Cr–8Ni–4Si (X0) to reduce the risk of solidification cracking. Strain-controlled fatigue tests were conducted at various total strain amplitudes. X05 demonstrated superior fatigue life to conventional steels and transformation/twinning-induced plasticity steels while maintaining performance comparable to X0. Its cyclic hardening behavior consisted of rapid hardening in its early fatigue stages, followed by gradual hardening until fracture. The extent of cyclic hardening became more pronounced with strain amplitudes, with a steeper rise at lower strain amplitudes. Electron backscatter diffraction analysis and ferrite-scope measurements showed that γ→ε martensitic transformation occurred across all strain amplitudes, whereas α′-martensite appeared only at higher amplitudes. The ε-martensite fraction increased with the strain amplitude but saturated at approximately 75 % above a total strain amplitude of 1 %, while the α′-martensite continued to increase at higher strain amplitudes. Interrupted fatigue tests revealed multiple slip activations in γ-austenite in its early fatigue stages, followed by progressive ε-martensite formation until failure. Therefore, the initial rapid hardening was driven by dislocation interactions on multiple slip systems, and its gradual hardening was caused by sluggish ε-martensite formation, resulting in progressive grain refinement. The α′-martensite was not detected during the early stages but started to appear gradually in the later stages of fatigue, following the formation of ε-martensite. These findings confirm that the modification of chemical composition from X0 does not deteriorate fatigue life and does not significantly change cyclic hardening behavior of X05. Furthermore, the cyclic hardening behavior appears to be influenced by dynamic microstructural changes during fatigue deformation, exhibiting a pronounced dependence on strain amplitude.

0102材料力学
ad
ad
Follow
ad
タイトルとURLをコピーしました