鉛冷却高速炉に適した新鋼材の必要性を解明(Study explains why new kinds of steel needed to build lead cooled reactors)

2025-12-09 スウェーデン王立工科大学(KTH)

KTH Royal Institute of Technology(KTH)の研究グループは、鉛を冷却材とする次世代高速炉(Lead‑Cooled Fast Reactor: LCFR)向けに、現在使われている原子炉用鋼(たとえばオーステナイト系ステンレス鋼 AISI 316L)では適さないことを示すメカニズムを明らかにした。従来想定されたように「鉛が鋼表面にただ被覆する」わけではなく、実際には鉛が非常に薄い液体膜(厚さ1マイクロメートル程度)として鋼表面を覆い、その鉛膜を介してニッケルが鋼から溶け出す。その結果、残った鉄とクロムがフェライト相へ再配列し、脆く、孔の多いフェライト層が形成される。この脆い層は、流動する鉛によって容易に削り取られ、鋼材が「年あたり数ミリメートル」という想定以上の速度で腐食・劣化する。よって単一のオーステナイト鋼では耐久性を確保できず、有望なのは、異なる鋼種を「層構造」で組み合わせた材質――例えば自己修復性の酸化アルミニウム皮膜(Al₂O₃)を作ることができるフェライト系アルミナ形成鋼(FeCrAl)――だと結論づけられた。この知見は、鉛冷却炉を実際に長期間、安全に運用するための材料設計の方向性を示すものである。

鉛冷却高速炉に適した新鋼材の必要性を解明(Study explains why new kinds of steel needed to build lead cooled reactors)
The effects of exposure to liquid lead can be seen on these sample bars of stainless steel. Photo: Kin Wing Wong

<関連情報>

移動する液体膜によって支配される不連続反応による鉛中のオーステナイトのフェライト化の機構的洞察 Mechanistic insight into the ferritization of austenite in Pb via a discontinuous reaction governed by a migrating liquid film

Kin Wing Wong, Peter Szakálos, Christopher Petersson, Dmitry Grishchenko, Pavel Kudinov
Corrosion Science  Available online: 8 October 2025
DOI:https://doi.org/10.1016/j.corsci.2025.113398

Highlights

  • Rapid corrosion at 500–550°C proceeds through a discontinous reaction governed by a migrating film.
  • Pb films at the reaction front and Pb-rich pockets in ferrite confirms the migrating-film controlled reaction.
  • Rate-limiting step shifts from Cr transport in liquid channels to metal diffusion through amorphous oxide at higher oxygen.
  • Continuous erosion enhances mass transport and accelerates corrosion by shortening diffusion paths.
  • Flow-induced shear may outweigh mass transfer effects in ferritization, revealing an erosion-accelerated corrosion pathway.

Abstract

The dissolution of austenitic steel in liquid lead-based alloys can induce a phase transformation characterized by a sharp dissolution front separating ferrite and austenite grains, a process commonly referred to as ferritization. Although widely reported, the mechanism driving this transformation remains under debate. This study re-examines ferritization as a discontinuous reaction via a migrating liquid film and proposes a thermodynamically consistent model for the initiation and propagation of the dissolution front. The proposed mechanism is supported by experiments at 500–550°C, literature evidence, and diffusion calculations. Under low oxygen conditions, Cr transport through liquid Pb channels is identified as the rate-limiting step, setting the theoretical corrosion rate in stagnant environments. High-speed erosion-corrosion tests show enhanced corrosion rates, driven by erosion-limited channel lengths that locally boost mass transport. In contrast, under moderate oxygen concentrations relevant for lead-cooled fast reactor (LFR) operation, the rate-limiting step shifts to metal transport across a nanometer-scale amorphous oxide layer at the reaction front. Other Ni-containing austenitic steels, including alumina-forming austenitic (AFA) alloys and Ni-based high-entropy alloys (HEAs) can also be susceptible to discontinuous reactions under direct contact with liquid Pb-based alloys, lacking the self-healing oxide protection as observed in alumina-forming ferritic steels. This limitation may present a concern for the long-term use of bare austenitic steel in liquid Pb environments.

2001原子炉システムの設計及び建設
ad
ad
Follow
ad
タイトルとURLをコピーしました