設計の不確実性を考慮した複雑システム設計手法(Accounting for uncertainty to help engineers design complex systems)

2025-10-02 マサチューセッツ工科大学(MIT)

MITの研究チームは、センサーや電池など多数の要素から成る複雑システム設計において、部品性能の不確実性を考慮できる新しいフレームワークを開発した。従来の設計法は部品の性能を固定値で扱い、最良・最悪ケースしか評価できなかったが、本手法は確率的に幅広い結果を捉え、より現実的な設計選択を可能にする。数理基盤には圏論を応用し、部品同士の相互作用を不確実性込みで体系的に扱えるのが特徴。ドローンのバッテリーやセンサー選定を例に、寿命コストや重量とのトレードオフを具体的に示した。今後は自動運転車、航空機、交通ネットワーク設計など、複数の専門分野が関わる大規模システムに応用が期待される。研究成果はIEEE制御会議で発表予定。

設計の不確実性を考慮した複雑システム設計手法(Accounting for uncertainty to help engineers design complex systems)MIT researchers developed a framework that can help engineers design complex systems that involve many interconnected parts, such as delivery drones that navigate changing environments, in a way that explicitly accounts for the uncertainty in each component’s performance. Credit: iStock

<関連情報>

システム協調設計における構成可能かつパラメータ的な不確実性について On Composable and Parametric Uncertainty in Systems Co-Design

Yujun Huang, Marius Furter, Gioele Zardini
arXiv  last revised 11 Aug 2025 (this version, v2)
DOI:https://doi.org/10.48550/arXiv.2504.02766

キャプションを参照

Figure 4:Trade-off between payload and lifetime cost for a fixed task profile, free choice of battery and actuators, and deterministic battery and actuator parameters. Pairs of payload and lifetime cost in the green region are feasible while those in the orange region are not. A larger payload requires higher lifetime cost, illustrating the monotonicity of co-design. Specific choices of battery technologies and actuators are shown for some optimal solutions.

Abstract

Optimizing the design of complex systems requires navigating interdependent decisions, heterogeneous components, and multiple objectives. Our monotone theory of co-design offers a compositional framework for addressing this challenge, modeling systems as Design Problems (DPs), representing trade-offs between functionalities and resources within partially ordered sets. While current approaches model uncertainty using intervals, capturing worst- and best-case bounds, they fail to express probabilistic notions such as risk and confidence. These limitations hinder the applicability of co-design in domains where uncertainty plays a critical role. In this paper, we introduce a unified framework for composable uncertainty in co-design, capturing intervals, distributions, and parametrized models. This extension enables reasoning about risk-performance trade-offs and supports advanced queries such as experiment design, learning, and multi-stage decision making. We demonstrate the expressiveness and utility of the framework via a numerical case study on the uncertainty-aware co-design of task-driven Unmanned Aerial Vehicles (UAVs).

0101機械設計
ad
ad
Follow
ad
タイトルとURLをコピーしました