超伝導材料の発見を導く統一理論を提案(Unified theory may reveal more superconducting materials)

2025-08-15 ペンシルベニア州立大学(PennState)

従来、超伝導体の理論と材料予測には限界があり、低温でしか機能しない物質が中心でした。ペンシルベニア州立大学のZi-Kui Liu教授らは、超伝導の古典的理論(BCS理論)と、第一原理計算法である密度汎関数理論(DFT)を結びつける統一的理論を提案しました。鍵となるのが「zentropy 理論」という新アプローチで、これは統計力学、量子物理学、コンピュータモデルを組み合わせて、温度変化による電子構造の変化と超伝導転移の相関を予測します。これにより、これまで理論的に扱えなかった未知の超伝導材料や、より高温で超伝導性を示す可能性のある物質を選定する道筋が開かれました。この枠組みは、Department of Energy(米エネルギー省)の支援のもと、Superconductor Science and Technology誌に掲載されています。

<関連情報>

密度汎関数理論により対称性破れ超伝導配置を解明する Revealing symmetry-broken superconducting configurations by density functional theory

Zi-Kui Liu and Shun-Li Shang
Superconductor Science and Technology  Published: 18 July 2025
DOI:10.1088/1361-6668/adedbc

超伝導材料の発見を導く統一理論を提案(Unified theory may reveal more superconducting materials)

Abstract

A coherent theory for the superconductivity of both conventional and unconventional superconductors is currently lacking. Here we show that superconductivity arises from the formation of a symmetry-broken superconducting configuration (SCC) due to atomic perturbation of the normal conducting configuration (NCC). This electron–phonon interaction creates straight one-dimensional tunnels (SODTs) for charge density of electrons and/or holes as revealed by the calculations based on density functional theory (DFT). The SODTs act as resistance-free superhighways and are correlated to the Cooper pairs in the Bardeen–Cooper–Schrieffer (BCS) theory. The formation of SODTs implies that the electron–phonon interaction in the BCS theory can be represented by the difference in charge densities between SCC and NCC predicted by DFT. The present work highlights that in conventional superconductors, SODTs are embedded within the bulk materials and are easily destroyed by phonon vibrations, resulting in a low critical superconducting temperature (Tc). Conversely, in unconventional superconductors such as YBa2Cu3O7 (YBCO7), SODTs are protected by a layered pontoon structure with very weak bonding to the bulk materials, maintaining SODTs’ stability at higher temperatures and leading to a much higher Tc. The present approach is validated for 14 conventional superconductors of 18 pure elements and MgB2 examined in this work, including the presently predicted superconductivity in Cu, Ag, Au, Sb, Bi, and MgB2 at 0 K and 0 GPa, and one unconventional superconductor of YBCO7. Our discovery indicates that DFT can be a practical tool for predicting superconductors, enabling a systematic search for new superconducting materials in the future.

0403電子応用
ad
ad
Follow
ad
タイトルとURLをコピーしました