吸着魚に着想を得た水中接着装置(Hitchhiking sucker fish-inspired adhesive sticks to soft surfaces underwater)

2025-07-23 マサチューセッツ工科大学(MIT)

MITが開発した水中接着デバイス「MUSAS」は、コバンザメの吸盤構造を模倣し、柔らかく動く水中表面にも強固に接着可能。形状記憶合金製の傾斜ラメラとエラストマー構造で、温度変化により自動で貼り付きと固定が行える。胃粘膜への薬物投与や魚体センサー装着など、多様な医療・環境応用が可能で、非モーター型の省エネ設計が特徴。実験では豚の胃や泳ぐ魚にも安定接着が確認された。

吸着魚に着想を得た水中接着装置(Hitchhiking sucker fish-inspired adhesive sticks to soft surfaces underwater)

MIT engineers have devised a novel adhesive system that can attach firmly to soft surfaces, even underwater.
Image: Courtesy of the researchers

<関連情報>

軟質基材用の機械式水中接着装置 Mechanical underwater adhesive devices for soft substrates

Ziliang Kang,Johanna A. Gomez,Alisa MeiShan Ross,Ameya R. Kirtane,Ming Zhao,Yubin Cai,Fu Xing Chen,Corona L. Chen,Isaac Diaz Becdach,Rajib Dey,Andrei Russel Ismael,Injoo Moon,Yiyuan Yang,Benjamin N. Muller,Mehmet Girayhan Say,Andrew Pettinari,Jason Kobrin,Joshua Morimoto,Ted Smierciak,Aaron Lopes,Ayten Ebru Erdogan,Matt Murphy,Niora Fabian,Ashley Guevara,… Giovanni Traverso
Nature  Published:23 July 2025
DOI:https://doi.org/10.1038/s41586-025-09304-4

Abstract

Achieving long-term underwater adhesion to dynamic, regenerating soft substrates that undergo extreme fluctuations in pH and moisture remains a major unresolved challenge, with far-reaching implications for healthcare, manufacturing, robotics and marine applications1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16. Here, inspired by remoras—fish equipped with specialized adhesive discs—we developed the Mechanical Underwater Soft Adhesion System (MUSAS). Through detailed anatomical, behavioural, physical and biomimetic investigations of remora adhesion on soft substrates, we uncovered the key physical principles and evolutionary adaptations underlying their robust attachment. These insights guided the design of MUSAS, which shows extraordinary versatility, adhering securely to a wide range of soft substrates with varying roughness, stiffness and structural integrity. MUSAS achieves an adhesion-force-to-weight ratio of up to 1,391-fold and maintains performance under extreme pH and moisture conditions. We demonstrate its utility across highly translational models, including in vitro, ex vivo and in vivo settings, enabling applications such as ultraminiaturized aquatic kinetic temperature sensors, non-invasive gastroesophageal reflux monitoring, long-acting antiretroviral drug delivery and messenger RNA administration via the gastrointestinal tract.

1700応用理学一般
ad
ad
Follow
ad
タイトルとURLをコピーしました