新たなAIモデルで北極海氷の季節予測を強化(Scientists Develop New AI Model to Enhance Seasonal Arctic Sea Ice Prediction)

ad

2025-05-23 中国科学院(CAS)

新たなAIモデルで北極海氷の季節予測を強化(Scientists Develop New AI Model to Enhance Seasonal Arctic Sea Ice Prediction)Framework of model SICNetseason (Image by IOCAS)

中国科学院海洋研究所の李暁峰教授らは、北極海の9月の海氷予測精度を高めるAIモデル「SICNetseason」を開発しました。このモデルは、従来の数値・統計モデルが苦手とする「春季予測障壁」を克服するために設計され、Swin-Transformerブロックを用いて海氷データの複雑な依存関係を解析。これにより予測精度(ACC)は最大10%、海氷境界の精度(BACC)は14%以上向上しました。特に春の海氷厚が精度向上に大きく寄与することも判明し、今後の気候変動研究や北極航路の利用計画に貢献が期待されます。

<関連情報>

SICNetseason V1.0:海氷厚データを取り入れた北極海海氷の季節予測のための変換器ベースのディープラーニングモデル SICNetseason V1.0: a transformer-based deep learning model for seasonal Arctic sea ice prediction by incorporating sea ice thickness data

Yibin Ren, Xiaofeng Li, and Yunhe Wang
Geoscientific Model Development  Published:14 May 2025
DOI:https://doi.org/10.5194/gmd-18-2665-2025

Abstract

The Arctic sea ice suffers dramatic retreat in summer and fall, which has far-reaching consequences for the global climate and commercial activities. Accurate seasonal sea ice predictions significantly infer climate change and are crucial for planning commercial activities. However, seasonal prediction of the summer sea ice encounters a significant obstacle known as the spring predictability barrier (SPB): predictions made later than the date of melt onset (roughly May) demonstrate good skill in predicting summer sea ice, while predictions made during or earlier than May exhibit considerably lower skill. This study develops a transformer-based deep learning model, SICNetseason (V1.0), to predict the Arctic sea ice concentration on a seasonal scale. Including spring sea ice thickness (SIT) data in the model significantly improves the prediction skill at the SPB point. A 20-year (2000–2019) test demonstrates that the detrended anomaly correlation coefficient (ACC) of September sea ice extent (sea ice concentration >15 %) predicted by our model during May and April is improved by 7.7 % and 10.61 %, respectively, compared to the ACC predicted by the state-of-the-art dynamic model SEAS5 from the European Centre for Medium-Range Weather Forecasts (ECMWF). Compared with the anomaly persistence benchmark, the mentioned improvement is 41.02 % and 36.33 %. Our deep learning model significantly reduces prediction errors in terms of September’s sea ice concentration on seasonal scales compared to SEAS5 and the anomaly persistence model (Persistence). The spring SIT data are key in optimizing the predictions around the SPB, contributing to an enhancement in ACC of more than 20 % in September’s sea ice extent (SIE) for 4- to 5-month-lead predictions. Our model achieves good generalizability in predicting the September SIE of 2020–2023.

1702地球物理及び地球化学
ad
ad
Follow
ad
タイトルとURLをコピーしました