ナノポア内の化学環境に関する新発見(The mysterious chemical world inside nanopores)

ad

2025-05-09 ワシントン大学セントルイス校

ワシントン大学セントルイス校のマッケルヴィー工学部の研究チームは、ナノポア内の化学反応を制御する新技術を開発しました。この研究では、ナノポア内部の化学官能基がイオン濃度やpHに与える影響を調査し、汚染物質の選択的制御が可能であることを示しました。特に、シンガマネニ教授の研究室が開発したプラズモニックナノセンサーを用いて、ナノポア内のプロトンやイオン汚染物質の濃度を高精度で測定しました。この成果は、水処理における脱塩技術、二酸化炭素の貯留、触媒反応の最適化など、さまざまな分野での応用が期待されています。

<関連情報>

化学官能基がナノ細孔内のイオン濃度とpHを制御する Chemical Functional Groups Regulate Ion Concentrations and pHs in Nanopores

Yaguang Zhu,Prashant Gupta,Hamed Gholami Derami,Yin-Yuan Huang,Srikanth Singamaneni,and Young-Shin Jun
ACS Applied Materials & Interfaces  Published: April 29, 2025
DOI:https://doi.org/10.1021/acsami.4c15940

Abstract

ナノポア内の化学環境に関する新発見(The mysterious chemical world inside nanopores)

Understanding ion behaviors in functionalized nanopores is essential to deciphering reactions in both natural and engineered systems, such as sediments, biological ion channels, and membranes. While many efforts have shown the modified ion behaviors in the functionalized nanopores, a direct measurement and analysis to show how chemical functional groups affect ion concentrations in nanopores are critically needed. Herein, we present a plasmonic nanosensor that can measure the local concentrations of protons, anions (phosphate, nitrate, sulfate, and arsenate), and cations (mercury, lead, and copper) in functionalized nanopores, and we compare their concentrations in nanopores with the corresponding bulk concentrations. Notably, chemical functional groups induced ion concentrations differently in nanopores. In pristine nanopores and methyl- and phenyl-functionalized nanopores, we discovered an unexpected concurrence of an enhanced anion concentration and a suppressed cation concentration. In addition, the nanopore pH is dependent on bulk solution compositions and can be lower by 2.5 units, even when the bulk solution is well-buffered. In contrast, for hydrophilic (amine, thiol, and carboxyl) nanopores, pH depended on the pKa of the functional groups, and the heavy metal concentrations depended on chemical interactions with the functional groups. Our findings provide a better understanding of water chemistry in nanopores and can help precisely control ions in nanopores to benefit the design of membrane-based desalination techniques, CO2 storage, and porous catalysts.

0505化学装置及び設備
ad
ad
Follow
ad
タイトルとURLをコピーしました