ナス科植物の化学防御をエピジェネティックに制御するメカニズム(How plants epigenetically regulate their chemical defences)

ad

2025-02-24 ミュンヘン大学(LMU)

ナス科植物の化学防御をエピジェネティックに制御するメカニズム(How plants epigenetically regulate their chemical defences)

The researchers were able to identify a gene cluster in Physalis grisea that is responsible for the synthesis of withanolides.

© LMU/Jessica Folgmann

ルートヴィヒ・マクシミリアン大学ミュンヘン(LMU)の研究チームは、ナス科植物が薬理学的に価値のある化合物をどのように生産し、その生合成がどのようにエピジェネティックに制御されているかを明らかにしました。研究者たちは、ホオズキ(Physalis grisea)において、ウィタノライドと呼ばれるステロイド系化合物の生合成に関与する遺伝子クラスターを特定しました。このクラスターは、ゲノム内で重複して存在し、一方は根で、もう一方は地上部で活性化されることが判明しました。さらに、この分離と組織特異的な発現は、DNAの構造や化学的修飾といったエピジェネティックな要因によって制御されていることが示されました。この発見は、植物が地上部と地下部で異なる化学防御を行うメカニズムを理解する上で重要であり、ウィタノライドを基にした新たな農薬や医薬品の開発につながる可能性があります。

<関連情報>

ナス科生合成遺伝子群のサブ機能化とエピジェネティック制御 Subfunctionalization and epigenetic regulation of a biosynthetic gene cluster in Solanaceae

Santiago Priego-Cubero, Eva Knoch, Zhidan Wang, +5, and Claude Becker

Proceedings of the National Academy of Sciences  Published:February 20, 2025

DOI:https://doi.org/10.1073/pnas.2420164122

Significance

Biosynthetic gene clusters (BGCs) describe the agglomeration of genes that contribute to the same biochemical pathway in a genetically linked genomic locus. Such BGCs coordinate the production of specialized metabolites and play an important role in the defensive chemical arsenal of plants and fungi. Here, we report on a BGC in species of the nightshade family that encodes the biosynthesis of withanolides, a group of diverse and multifunctional plant-specialized metabolites that are of interest in the context of plant protection and human health. Using Physalis grisea (ground-cherry) as a model, we show how this BGC is organized into different domains at the chromatin and epigenetic level, and how this organization modulates the specific activity and functionality of the biosynthesis.

Abstract

Biosynthetic gene clusters (BGCs) are sets of often heterologous genes that are genetically and functionally linked. Among eukaryotes, BGCs are most common in plants and fungi and ensure the coexpression of the different enzymes coordinating the biosynthesis of specialized metabolites. Here, we report the identification of a withanolide BGC in Physalis grisea (ground-cherry), a member of the nightshade family (Solanaceae). A combination of transcriptomic, epigenomic, and metabolic analyses revealed that, following a duplication event, this BGC evolved two tissue-specifically expressed subclusters, containing several pairs of paralogs that contribute to related but distinct biochemical processes; this subfunctionalization is tightly associated with epigenetic features and the local chromatin environment. The two subclusters appear strictly isolated from each other at the structural chromatin level, each forming a highly self-interacting chromatin domain with tissue-dependent levels of condensation. This correlates with gene expression in either above- or below-ground tissue, thus spatially separating the production of different withanolide compounds. By comparative phylogenomics, we show that the withanolide BGC most likely evolved before the diversification of the Solanaceae family and underwent lineage-specific diversifications and losses. The tissue-specific subfunctionalization is common to species of the Physalideae tribe but distinct from other, independent duplication events outside of this clade. In sum, our study reports on an instance of an epigenetically modulated subfunctionalization within a BGC and sheds light on the biosynthesis of withanolides, a highly diverse group of steroidal triterpenoids important in plant defense and amenable to pharmaceutical applications due to their anti-inflammatory, antibiotic, and anticancer properties.

1202農芸化学
ad
ad
Follow
ad
タイトルとURLをコピーしました