光パルスによって刺激される物質が、よりエネルギー効率の高いスーパーコンピューティングへの飛躍となる可能性(Material stimulated by light pulses could be leap toward more energy-efficient supercomputing)

ad

2024-10-16 アルゴンヌ国立研究所(ANL)

研究者たちは、フェリ電気材料(フェロエレクトリック材料)が光パルスに適応する性質を発見し、これがニューラルネットワークの可塑性に似ていることを報告しました。この適応的な反応は、エネルギー効率の高いマイクロエレクトロニクスの応用に役立つ可能性があります。光パルスによってフェリ電気材料内部のナノスケール構造が再編され、これが情報処理デバイスにおけるエネルギー効率の向上に貢献すると期待されています。研究はアルゴンヌ国立研究所と他の大学との共同で行われました。

<関連情報>

適応的ナノスケールドメインネットワークの光制御 Optical Control of Adaptive Nanoscale Domain Networks

Marc Zajac, Tao Zhou, Tiannan Yang, Sujit Das, Yue Cao, Burak Guzelturk, Vladimir Stoica, Mathew J. Cherukara, John W. Freeland, Venkatraman Gopalan, Ramamoorthy Ramesh …
Advanced Materials  Published: 10 July 2024
DOI:https://doi.org/10.1002/adma.202405294

光パルスによって刺激される物質が、よりエネルギー効率の高いスーパーコンピューティングへの飛躍となる可能性(Material stimulated by light pulses could be leap toward more energy-efficient supercomputing)

Abstract

Adaptive networks can sense and adjust to dynamic environments to optimize their performance. Understanding their nanoscale responses to external stimuli is essential for applications in nanodevices and neuromorphic computing. However, it is challenging to image such responses on the nanoscale with crystallographic sensitivity. Here, the evolution of nanodomain networks in (PbTiO3)n/(SrTiO3)n superlattices (SLs) is directly visualized in real space as the system adapts to ultrafast repetitive optical excitations that emulate controlled neural inputs. The adaptive response allows the system to explore a wealth of metastable states that are previously inaccessible. Their reconfiguration and competition are quantitatively measured by scanning x-ray nanodiffraction as a function of the number of applied pulses, in which crystallographic characteristics are quantitatively assessed by assorted diffraction patterns using unsupervised machine-learning methods. The corresponding domain boundaries and their connectivity are drastically altered by light, holding promise for light-programable nanocircuits in analogy to neuroplasticity. Phase-field simulations elucidate that the reconfiguration of the domain networks is a result of the interplay between photocarriers and transient lattice temperature. The demonstrated optical control scheme and the uncovered nanoscopic insights open opportunities for the remote control of adaptive nanoscale domain networks.

0403電子応用
ad
ad
Follow
ad
タイトルとURLをコピーしました