2024-06-20 パシフィック・ノースウェスト国立研究所(PNNL)
<関連情報>
- https://www.pnnl.gov/publications/new-software-tool-generates-data-analysis-complex-tof-sims
- https://pubs.aip.org/avs/jva/article/42/2/023204/3261927/Novel-principal-component-analysis-tool-based-on
飛行時間型二次イオン質量分析計の複雑なスペクトル解析のためのPythonベースの新しい主成分分析ツール
Novel principal component analysis tool based on python for analysis of complex spectra of time-of-flight secondary ion mass spectrometry
Yadong Zhou;Peishi Jiang;Ping Chen;Endong Jia;Cole S. Welch;Qian Zhao;Jeffrey A. Dhas;Emily B. Graham;Xingyuan Chen;Xin Zhang;Zihua Zhu
Journal of Vacuum Science and Technology A Published:February 06 2024
DOI:https://doi.org/10.1116/6.0003355
Time-of-flight secondary ion mass spectrometry (ToF-SIMS) is a powerful surface analysis tool, which can simultaneously provide elemental, isotopic, and molecular information with part per million (ppm) sensitivity. However, each spectrum may be composed of hundreds of ion signals, which makes the spectra data complex. Principal component analysis (PCA) is a multivariate analysis technique that has been widely used to figure out the variances among samples in ToF-SIMS spectra data analysis and is showing great success in the explanation of complex ToF-SIMS spectra. So far, several software tools have been developed for PCA of ToF-SIMS spectra; however, none of them are freely available. Such a situation leads to some difficulties in extending applications of PCA to various research fields. More importantly, it has long been challenging for common researchers to understand PCA plots and extract chemical differences among samples. In this work, we developed a new and flexible software tool (named “advanced spectra pca toolbox”) based on python for PCA of complex ToF-SIMS spectra along with an easy-to-read manual. It can generate data analysis reports automatically to explain chemical differences among samples, allowing less experienced researchers to easily understand tricky PCA results. Moreover, it is expandable and compatible with artificial intelligence/machine learning functions. Pure goethite and different lignin adsorbed goethite samples were used as a model system to demonstrate our new software tool, proving that our software tool can be readily used in complex spectra data processing. Our new software tool is open-source, convenient, flexible, and expandable. We expect this open-source tool will benefit the ToF-SIMS community.