古典的な光の代わりにもつれた光子を使うことで、顕微鏡の超解像が可能になる Using entangled photons instead of classical light gives microscopes super-resolution
2023-03-16 カリフォルニア工科大学(Caltech)
Carbon fibres imaged with classical microscopy and quantum microscopy by coincidence (Source: arxiv.org/abs/2303.04948)
量子力学は、「量子もつれ」した光子による別の解決策を提供します。これらは、空間的に分離された光の粒子であり、同じ存在を共有しています。Wang氏らは、これらの光子が同じ長さの対称的なパスをたどって再結合すると述べています。このとき、「彼らは半波長の単一光子のように振る舞い、解像度が2倍向上します」と述べています。これにより、元の波長で迷い込んだ光子を簡単に無視することができます。
<関連情報>
- https://www.discovermagazine.com/the-sciences/quantum-imaging-doubles-microscope-resolution
- https://arxiv.org/abs/2303.04948
ハイゼンベルグ極限におけるがん細胞の量子顕微鏡観察 Quantum Microscopy of Cancer Cells at the Heisenberg Limit
Zhe He, Yide Zhang, Xin Tong, Lei Li, Lihong V. Wang
arXiv Submitted on: 8 Mar 2023
DOI:https://doi.org/10.48550/arXiv.2303.04948
Entangled biphoton sources exhibit nonclassical characteristics and have been applied to novel imaging techniques such as ghost imaging, quantum holography, and quantum optical coherence tomography. The development of wide-field quantum imaging to date has been hindered by low spatial resolutions, speeds, and contrast-to-noise ratios (CNRs). Here, we present quantum microscopy by coincidence (QMC) with balanced pathlengths, which enables super-resolution imaging at the Heisenberg limit with substantially higher speeds and CNRs than existing wide-field quantum imaging methods. QMC benefits from a configuration with balanced pathlengths, where a pair of entangled photons traversing symmetric paths with balanced optical pathlengths in two arms behave like a single photon with half the wavelength, leading to 2-fold resolution improvement. Concurrently, QMC resists stray light up to 155 times stronger than classical signals. The low intensity and entanglement features of biphotons in QMC promise nondestructive bioimaging. QMC advances quantum imaging to the microscopic level with significant improvements in speed and CNR toward bioimaging of cancer cells. We experimentally and theoretically prove that the configuration with balanced pathlengths illuminates an avenue for quantum-enhanced coincidence imaging at the Heisenberg limit.