SPring-8

最先端の永久磁石材料内部の微小磁石の振舞いを3次元で透視~超高性能磁石開発に向けた保磁力メカニズム解明に一歩前進~ 1700応用理学一般

最先端の永久磁石材料内部の微小磁石の振舞いを3次元で透視~超高性能磁石開発に向けた保磁力メカニズム解明に一歩前進~

2022-08-23 物質・材料研究機構これまで磁石内部に存在する磁区構造を3次元で見ることはできませんでしたが、SPring-8で開発された硬X線磁気トモグラフィー法を用いて、磁石材料内部の磁区構造の外部磁場に対する振舞いを3次元的に可視...
エネルギー分解型光モニターを開発 ~眩しすぎて見ることができなかった光の芯を見た!~ 2004放射線利用

エネルギー分解型光モニターを開発 ~眩しすぎて見ることができなかった光の芯を見た!~

2022-04-22 高輝度光科学研究センター,理化学研究所高輝度光科学研究センター(JASRI)ビームライン技術推進室の工藤統吾主幹研究員、佐野睦主幹研究員、糸賀俊朗主幹研究員、後藤俊治コーディネーター、情報技術推進室の松本崇博主幹研究員...
高強度アルミニウム合金の破壊防止法を確立 ~そのさらなる高性能化、軽量化の実現に道~ 0703金属材料

高強度アルミニウム合金の破壊防止法を確立 ~そのさらなる高性能化、軽量化の実現に道~

大型放射光施設SPring-8でのX線CTを利用した4D観察を活用し、高強度アルミニウム合金にある種の粒子を生成させることで、水素脆化を有効に防止できることを見出しました。
ad
火星コア中で液体金属が分離する 〜火星磁場の消失と海の蒸発の原因解明へ〜 1702地球物理及び地球化学

火星コア中で液体金属が分離する 〜火星磁場の消失と海の蒸発の原因解明へ〜

超高圧高温発生技術と、大型放射光施設SPring-8の放射光X線を用いた実験の組み合わせにより、火星や地球コアに相当する高圧高温の条件下で、硫黄と水素を含んだ鉄合金の融解実験に成功しました。火星コア中で鉄-硫黄-水素合金は、硫黄に富む液体と水素に富む液体の2つに(水と油のように)分離することが明らかになりました。
SPring-8-IIに向けSACLAを高性能入射器として利用~グリーンファシリティ実現への第一歩~ 2004放射線利用

SPring-8-IIに向けSACLAを高性能入射器として利用~グリーンファシリティ実現への第一歩~

X線自由電子レーザー(XFEL)施設「SACLA」の線型加速器を大型放射光施設「SPring-8」の蓄積リングの入射器として活用することに成功しました。老朽化した従来のSPring-8の入射専用加速器をSACLA線型加速器で置き換えることで、大幅に消費電力を削減し、対応する特別高圧受変電設備の更新を不要にするとともに、次期計画である「SPring-8-II」に必要な高品質の入射ビームを利用可能にしたものです。
酸素金属化に伴う電子状態変化を世界で初めて実測 2004放射線利用

酸素金属化に伴う電子状態変化を世界で初めて実測

100万気圧で酸素が金属化することに伴う電子状態の変化をX線ラマン散乱測定と電子状態計算により解明した。
隕石中に小惑星の氷の痕跡を発見 1701物理及び化学

隕石中に小惑星の氷の痕跡を発見

炭素質コンドライトの一つAcfer 094隕石の内部を観察し、氷が抜けてできたと考えられる小さな空間を多数発見した。
2つの起源で“温めると縮む”新材料を発見 0501セラミックス及び無機化学製品

2つの起源で“温めると縮む”新材料を発見

ニッケル酸ビスマス(BiNiO3)とニッケル酸鉛(PbNiO3)の固溶体が、組成に応じて金属間電荷移動と、極性−非極性転移)という、2つの異なるメカニズムで、温めると縮む負熱膨張を示すことを発見した。
活性型ビタミン B12がラジカル酵素反応を制御する仕組みを世界で初めて発見 0502有機化学製品

活性型ビタミン B12がラジカル酵素反応を制御する仕組みを世界で初めて発見

アデノシル B12の核であるコリン環のアミド側鎖の1つが周囲のアミノ酸残基と連携し、アデノシル B12が活性化されて生成したアデノシルラジカルの構造を安定に保つことで副反応を起こりにくくする働きがあることを世界で初めて明らかにした。
バルク結晶と薄膜結晶で異なるスピン状態を直接観測 1700応用理学一般

バルク結晶と薄膜結晶で異なるスピン状態を直接観測

軟X線の共鳴非弾性散乱を用いて、ペロブスカイト型ランタン・コバルト酸化物におけるコバルトの電子状態・スピン状態を直接観測することに成功しました。エピタキシャル成長した薄膜結晶ではバルク結晶とは異なるスピン状態が実現することを明らかにした。
微小タンパク質結晶から迅速に構造決定 2005放射線防護

微小タンパク質結晶から迅速に構造決定

大型放射光施設「SPring-8」のマイクロビームX線を用いて、大量の微小結晶から得られたデータを自動的に処理し、迅速な構造決定を可能にするプログラムを開発・公開しました。
生体分子を構成する原子のイオンの散乱因子の決定 1700応用理学一般

生体分子を構成する原子のイオンの散乱因子の決定

クライオ電子顕微鏡および大型放射光施設「SPring-8」などの放射光を用いて、タンパク質やその複合体などの生体分子を構成する原子のイオンの「散乱因子」を決定しました。
ad
タイトルとURLをコピーしました