トーマス・エジソンの忘れられた電池設計を再構想(UCLA scientists reimagine a forgotten battery design from Thomas Edison)

2026-02-10 カリフォルニア大学ロサンゼルス校(UCLA)

カリフォルニア大学ロサンゼルス校(UCLA)の研究者らは、発明家トーマス・エジソンが開発したニッケル・鉄電池の設計を現代技術で再評価し、性能向上の可能性を示した。エジソン電池は耐久性に優れる一方で効率面に課題があったが、材料設計や電極構造の最適化により、充放電特性や寿命を改善できることが分かった。持続可能で安全性の高い蓄電技術として、再生可能エネルギーの貯蔵用途への応用が期待される。

トーマス・エジソンの忘れられた電池設計を再構想(UCLA scientists reimagine a forgotten battery design from Thomas Edison)
An illustration symbolizes new battery technology: Proteins (red) hold tiny clusters of metal (silver). Each yellow ball in the structures at center represents a single atom of nickel or iron.Maher El-Kady/UCLA

<関連情報>

先進的なエネルギー貯蔵と電気触媒のためのタンパク質テンプレートFeおよびNiサブナノクラスターProtein-Templated Fe and Ni Subnanoclusters for Advanced Energy Storage and Electrocatalysis

Habibeh Bishkul, Abolhassan Noori, Mohammad S. Rahmanifar, Nasim Hassani, Mehdi Neek-Amal, Junlei Liu, Cheng Zhang, Maher F. El-Kady, Nahla B. Mohamed, Richard B. Kaner, Mir F. Mousavi
Small  Published: 30 August 2025
DOI:https://doi.org/10.1002/smll.202507934

Abstract

Downsizing metal nanoparticles into nanoclusters and single atoms represents a transformative approach to maximizing atom utilization efficiency for energy applications. Herein, a bovine serum albumin-templated synthetic strategy is developed to fabricate iron and nickel nanoclusters, which are subsequently hydrothermally composited with graphene oxide. Through KOH-catalyzed pyrolysis, the downsized metal nanoclusters and single atoms are embedded in a hierarchically porous protein/graphene-derived carbonaceous aerogel framework. The carbon-supported Fe subnanoclusters (FeSNC) as the negative electrode and Ni subnanoclusters (NiSNC) as the positive electrode exhibit remarkable specific capacitance (capacity) values of 373 F g−1 (93 mAh g−1) and 1125 F g−1 (101 mAh g−1) at 1.0 A g−1, respectively. Assembled into a supercapacitor-battery hybrid configuration, the device achieves an excellent specific energy (47 W h kg−1) and superior specific power (18 kW kg−1), while maintaining outstanding cycling stability of over 12 000 cycles. Moreover, FeSNCs displayed a significantly reduced oxygen evolution overpotential (η10 = 270 mV), outperforming the RuO2 benchmark (η10 = 328 mV). Molecular dynamics simulations, coupled with density functional theory calculations, offer insights into the dynamic behavior and electronic properties of these materials. This work underscores the immense potential of metallic subnanoclusters for advancing next-generation energy storage and conversion technologies.

0402電気応用
ad
ad
Follow
ad
タイトルとURLをコピーしました