超低損失光ファイバー性能をフォトニックチップへ拡張 (Extending Optical Fiber’s Ultralow Loss Performance to Photonic Chips)

2026-02-04 カリフォルニア工科大学(Caltech)

カリフォルニア工科大学(Caltech)の研究チームは、光ファイバー並みの超低損失性能をシリコン上のフォトニック集積回路(PIC)へと移植する新技術を開発した。この技術では、光ファイバーに使われるゲルマノシリケートガラスをナノスケールの導波路としてウェハー上に形成し、目に見える可視域から近赤外まで広い波長帯で超低損失を実現する。従来のシリコンナイトライド材料を用いたデバイスを近赤外域では匹敵する性能で上回るだけでなく、可視域では20倍以上の損失低減を達成した。損失の削減はレーザーのコヒーレンス時間を100倍以上延ばすなど、光時計・原子センサー・イオントラップなどの高精度計測や、AIデータセンター向け通信といった実用応用の性能向上につながる。これは光ファイバーの特徴である超低損失をオンチップで達成するもので、フォトニック回路のエネルギー効率と機能性の大幅な改善を示す成果である。

超低損失光ファイバー性能をフォトニックチップへ拡張 (Extending Optical Fiber’s Ultralow Loss Performance to Photonic Chips)
Combining the low-loss performance of optical fibers with large-scale integrated circuits, the new work moves toward a new generation of ultralow-loss photonic integrated circuits.Credit: Hao-Jing Chen

<関連情報>

紫から近赤外までの光子集積における光ファイバーのような損失に向けて Towards fibre-like loss for photonic integration from violet to near-infrared

Hao-Jing Chen,Kellan Colburn,Peng Liu,Hongrui Yan,Hanfei Hou,Jinhao Ge,Jin-Yu Liu,Phineas Lehan,Qing-Xin Ji,Zhiquan Yuan,Dirk Bouwmeester,Christopher Holmes,James Gates,Henry Blauvelt & Kerry Vahala
Mature  Published:07 January 2026
DOI:https://doi.org/10.1038/s41586-025-09889-w

Abstract

Over the past decades, remarkable progress has been made in reducing the loss of photonic integrated circuits (PICs) within the telecom band1,2,3,4, facilitating on-chip applications spanning low-noise optical5 and microwave synthesis6, to lidar7 and photonic artificial intelligence engines8. However, several obstacles arise from the marked increase in material absorption and scattering losses at shorter wavelengths9,10, which prominently elevate power requirements and limit performance in the visible and near-visible spectrum. Here we present an ultralow-loss PIC platform based on germano-silicate—the material underlying the extraordinary performance of optical fibre—but realized by a fully CMOS-foundry-compatible process. These PICs achieve resonator Q factors surpassing 180 million from violet to telecom wavelengths. They also attain a 10-dB higher quality factor without thermal treatment in the telecom band, expanding opportunities for heterogeneous integration with active components11. Other features of this platform include readily engineered waveguide dispersion, acoustic mode confinement and large-mode-area-induced thermal stability—each demonstrated by soliton microcomb generation, stimulated Brillouin lasing and low-frequency-noise self-injection locking, respectively. The success of these germano-silicate PICs can ultimately enable fibre-like loss onto a chip, leading to an additional 20-dB improvement in waveguide loss over the current highest performance photonic platforms. Moreover, the performance abilities demonstrated here bridge ultralow-loss PIC technology to optical clocks12, precision navigation systems13 and quantum sensors14.

0403電子応用
ad
ad
Follow
ad
タイトルとURLをコピーしました