二酸化炭素の高効率電解還元を実現:重炭酸媒介型統合回収電解法 (Researchers Achieve Efficient Bicarbonate-mediated Integrated Capture and Electrolysis of CO2)

2026-01-13 中国科学院(CAS)

中国科学院大連化学物理研究所(DICP)と復旦大学の研究チームは、重炭酸塩媒介型のCO₂回収・電解一体化プロセスにおいて、反応微小環境制御により高効率化を達成した。従来の「回収―放出―圧縮―電解」経路に比べ、同手法は高純度CO₂取得に伴うエネルギー消費を低減できるが、電流密度不足と高セル電圧が課題だった。研究では、コバルトフタロシアニン(CoPc)電極にイオノマーを導入し、特にナフィオン修飾によりCO生成のファラデー効率93%、電流密度300 mA cm⁻²、低セル電圧3.09 Vを実現。プロトン伝導性向上により触媒近傍のin situ生成CO₂濃度が高まり、性能が改善された。模擬排ガスを用いた閉ループ実証にも成功し、反応型炭素回収技術の前進を示した。

<関連情報>

重炭酸塩媒介統合CO2回収・電気分解におけるイオン交換樹脂駆動型反応ミクロ環境制御 Ionomer-Driven Reaction Microenvironment Control in Bicarbonate-Mediated Integrated CO2 Capture and Electrolysis

Youwen Rong, Chuanchuan Yan, Dr. Xiaotong Li, Jing Liu, Prof. Dr. Xiaozhi Su, Prof. Dr. Guohui Zhang, Prof. Dr. Dunfeng Gao, Prof. Dr. Guoxiong Wang, Prof. Dr. Xinhe Bao
Angewandte Chemie International Edition  Published: 10 January 2026
DOI:https://doi.org/10.1002/anie.202523118

Graphical Abstract

A proton-conducting ionomer regulates the reaction microenvironment by increasing the local CO2 concentration around a catalyst particle, resulting in a record CO partial current density of 410 mA cm−2 at a low cell voltage of 3.09 V. The impressive bicarbonate electrolysis performance enables a promising bicarbonate-mediated integrated CO2 capture and electrolysis process.

二酸化炭素の高効率電解還元を実現:重炭酸媒介型統合回収電解法 (Researchers Achieve Efficient Bicarbonate-mediated Integrated Capture and Electrolysis of CO2)

Abstract

Bicarbonate electrolysis coupling upstream CO2 capture with electrochemical conversion of captured CO2 presents an energy-efficient alternative to existing CO2 electrolysis route. Yet, its practical application is impeded by unsatisfactory reaction rate and energy efficiency. Here, we have improved the bicarbonate electrolysis performance through manipulating reaction microenvironments by introducing ionomers into cobalt phthalocyanine (CoPc) electrodes. The Nafion-incorporated CoPc electrode exhibits a maximum CO partial current density of 410 mA cm−2 at a low cell voltage of 3.09 V in a cation exchange membrane-based zero-gap electrolyzer. Electrode structure characterization and finite element simulation results indicate that the proton conductivity of the Nafion ionomer increases the local concentration of in situ generated CO2 around CoPc catalyst, resulting in impressive CO production performance. A closed-loop demonstration using the Nafion-incorporated CoPc electrode and a simulated flue gas underscores the great promise of the bicarbonate-mediated integrated CO2 capture and electrolysis process.

0505化学装置及び設備
ad
ad
Follow
ad
タイトルとURLをコピーしました