局所磁場勾配による重要物質の分離促進(Local Magnetic Field Gradients Enable Critical Material Separations)

2026-01-09 パシフィック・ノースウェスト国立研究所(PNNL)

米国のPacific Northwest National Laboratory(PNNL)の研究チームは、局所的な磁場勾配を利用して希土類元素(REEs)を効率的に分離する新しい方法を実証した。REEsは化学的性質がほぼ同じため、従来の分離プロセスでは高いエネルギーや多量の薬品を必要とし、希薄な原料からの抽出が困難だった。研究では低コストの永久磁石によって強い磁場勾配を溶液中に発生させ、これにより希土類イオンが濃縮領域へ誘導される現象を実時間で観測した。この現象は、高スループットのマッハ–ツェンダー干渉計によって可視化され、磁場勾配がイオン輸送に長距離効果を及ぼし、溶液中の濃度を最大で3〜4倍に高めることが確認された。この濃縮は局所的な電気化学ポテンシャルをシフトさせ、特定の希土類化合物の結晶化を促進する効果も示した。予備的な技術経済評価では、従来法と比較してエネルギーおよび化学品コストが大幅に低減できることが示され、複雑な原料からのREE回収に対するスケーラブルで経済的な分離プラットフォームとして期待されている。

<関連情報>

局所的な磁場勾配は、イオン濃縮と重要な金属分離のための電気化学ポテンシャルの形成を加速します Localized magnetic field gradients accelerate ion enrichment and formation of electrochemical potentials for critical metal separation

Giovanna Ricchiuti, Zachary Fox, Bruce Palmer, Mohammadhasan Dinpajooh, Ivani Jayalath, Yang Huang, Shuai Zhang, Evan Mondarte, Grant E. Johnson, Alan G. Joly, Jaehun Chun, Kevin Crampton, Venkateshkumar Prabhakaran
Separation and Purification Technology  Available online: 24 November 2025
DOI:https://doi.org/10.1016/j.seppur.2025.136148

Graphical abstract

Magnetic field gradients enable voltage-free, selective ion transport and interfacial enrichment of paramagnetic rare earth elements via a self-regulating drift–diffusion mechanism, leading to the selective crystallization of critical materials.

局所磁場勾配による重要物質の分離促進(Local Magnetic Field Gradients Enable Critical Material Separations)

Highlights

  • Local magnetic field gradients drive selective ion enrichment without applied voltage.
  • Paramagnetic and diamagnetic ions exhibit opposing wave-like redistribution behavior.
  • Mach–Zehnder interferometry visualizes ion transport at the magnet–liquid interface.
  • Spontaneous electrochemical potentials arise from magnetically induced ion gradients.
  • Enables tunable, low-energy REE crystallization for sustainable critical material recovery.

Abstract

Selective separation and crystallization are vital for recovering rare earth elements (REEs) from secondary sources like produced water, mine tailings, and coal ash. However, the near-identical chemistry of lanthanides renders conventional methods inefficient. Magnetic separation offers a compelling alternative by exploiting differences in magnetic moments, yet fields from low-cost permanent magnets are often dismissed as too weak to drive selective ion transport without chemical or electrochemical inputs. Here, we demonstrate that inhomogeneous magnetic field gradients alone, without applied electric fields, induce long-range, directed transport and spatial redistribution of solvated lanthanide ions. High-resolution Mach–Zehnder interferometry reveals the emergence of concentration waves and sustained ion enrichment, uncovering a dynamic force balance between magnetic drift and other forces in solution. These spatiotemporal observations are supported by a modified Poisson–Nernst–Planck (PNP) model that incorporates magnetic drift, standard diffusion, and charge imbalance forces. Such a magnetically driven non-equilibrium mechanism elevates near-surface concentrations to 3–4 times above bulk values, forming condensed ionic domains that not only shift the local electrochemical potential of paramagnetic species but also trigger crystallization of well-defined dysprosium oxalate crystals at the magnetized interface. These newly observed phenomena unlock a powerful, field-responsive strategy for actively sculpting interfacial energetics, expanding beyond traditional chemical functionalization and opening new avenues for controlling ionic behavior at the nanoscale. Furthermore, a conservative technoeconomic analysis suggests that these inhomogeneous field based passive magnetic separation can significantly reduce energy and chemical costs for paramagnetic REEs compared to conventional methods, offering a scalable and sustainable platform for critical metal recovery from complex feedstocks.

0500化学一般
ad
ad
Follow
ad
タイトルとURLをコピーしました