産業廃ガスから水素を生成するグリーン技術を実証(Chinese Green Innovation Project Produces Hydrogen from Waste Gas)

2026-01-07 中国科学院(CAS)

中国科学院(CAS)大連化学物理研究所の李燦(Li Can)氏率いる研究チームは、有毒な産業廃ガスである硫化水素(H₂S)を高純度水素と硫黄に完全分解するグリーン技術の実証プロジェクトを北京で完了した。本技術はオフフィールド電気触媒を用い、反応場と電極を空間的に分離することで安全性とスケールアップ性を確保している。年10万立方メートルのH₂S処理能力を持ち、転換率は99.999%超。メタノール工場由来のH₂Sを原料に、商用品位の水素と硫黄を生産可能で、化石燃料産業の環境負荷低減と資源循環を同時に実現する。中国全体に適用すれば、年間約73万トンの低炭素水素回収が見込まれる。

<関連情報>

H2S電気分解によるH 2生成用の高効率で耐久性のある一体型チェーンメイル電極 Highly Effective and Durable Integrated-Chainmail Electrode for H2 Production through H2S Electrolysis

Mo Zhang, Zuochao Wang, Liumo Jiang, Xin Bo, Xiaoju Cui, Dehui Deng
Angewandte Chemie International Edition  Published: 13 February 2025
DOI:https://doi.org/10.1002/anie.202502032

Graphical Abstract

A robust integrated electrode that features a dual-level chainmail structure with graphene encapsulating nickel foam is developed to enhance H2S electrolysis for green hydrogen production. The unique integrated-chainmail structure significantly improves both the activity and stability of the nickel foam. This chainmail electrodes realizes efficient hydrogen production at a high power of 224 W with 43 % electricity consumption reduction.

産業廃ガスから水素を生成するグリーン技術を実証(Chinese Green Innovation Project Produces Hydrogen from Waste Gas)

Abstract

H2S is a prevalent yet toxic gas commonly encountered during fossil fuel extraction, whose electrolysis not only addresses pollution concerns but also facilitates hydrogen production. However, the advancement of H2S electrolysis at high current density has been impeded by the lack of stable and highly active electrodes that can endure the corrosive effects of H2S poisoning. Herein, we present an integrated-chainmail electrode that features dual-level chainmail structure with graphene encapsulating nickel foam (Ni@NC foam) to enhance H2S electrolysis. The electrode comprises a primary chainmail, formed by graphene coating on the surface of nickel foam, and a secondary chainmail, created by graphene encapsulating nickel nanoparticles. This integrated-chainmail structure significantly enhances both the activity and stability of nickel foam, which delivers an industrial-scale high current density exceeding 1 A cm−2 at 1.12 V versus reversible hydrogen electrode, above five times higher than nickel foam. Moreover, the Ni@NC foam remains stable over 300 hours of test, demonstrating a lifespan at least ten times longer than nickel foam. In a demo for H2S removal from simulated natural gas, the Ni@NC foam as the electrodes exhibits a hydrogen production rate of 272 ml min−1, while reducing electricity consumption by 43 % compared with traditional water electrolysis.

0505化学装置及び設備
ad
ad
Follow
ad
タイトルとURLをコピーしました