AIで光学系設計を数か月からミリ秒に短縮(AI approach takes optical system design from months to milliseconds)

2026-01-05 ペンシルベニア州立大学(Penn State)

ペンシルベニア州立大学の工学系研究チームは、従来は数か月を要していた光学システム設計を、わずかミリ秒単位で実行可能にするAI手法を開発した。光学レンズやイメージングシステムの設計は、多数の設計変数と厳密な物理制約を伴うため、専門家による反復的最適化が不可欠だった。研究チームは、物理法則を組み込んだ機械学習モデルを用いることで、性能要件を入力するだけで最適な光学構成を即座に提示できる枠組みを構築した。このAIは、設計空間を高速探索しつつ、実用可能な解を高精度で生成する。新手法はカメラ、顕微鏡、医療機器、宇宙・防衛用途など幅広い分野への応用が期待され、光学設計の自動化と開発期間の大幅短縮を実現する基盤技術として注目されている。

AIで光学系設計を数か月からミリ秒に短縮(AI approach takes optical system design from months to milliseconds)
A group of researchers at Penn State developed an approach that integrates artificial intelligence into metasurface design. Their work was featured on the cover of the October issue of Nanophotonics. Credit: Provided by Huanshu Zhang. All Rights Reserved.

<関連情報>

チャットからチップへ:大規模言語モデルに基づく任意形状メタサーフェスの設計 Chat to chip: large language model based design of arbitrarily shaped metasurfaces

Huanshu Zhang, Lei Kang, Sawyer D. Campbell and Douglas H. Werner
Nanophotonics  Published:October 9, 2025
DOI:https://doi.org/10.1515/nanoph-2025-0343

Abstract

Traditional metasurface design is limited by the computational cost of full-wave simulations, preventing thorough exploration of complex configurations. Data-driven approaches have emerged as a solution to this bottleneck, replacing costly simulations with rapid neural network evaluations and enabling near-instant design for meta-atoms. Despite advances, implementing a new optical function still requires building and training a task-specific network, along with exhaustive searches for suitable architectures and hyperparameters. Pre-trained large language models (LLMs), by contrast, sidestep this laborious process with a simple fine-tuning technique. However, applying LLMs to the design of nanophotonic devices, particularly for arbitrarily shaped metasurfaces, is still in its early stages; as such tasks often require graphical networks. Here, we show that an LLM, fed with descriptive inputs of arbitrarily shaped metasurface geometries, can learn the physical relationships needed for spectral prediction and inverse design. We further benchmarked a range of open-weight LLMs and identified relationships between accuracy and model size at the billion-parameter level. We demonstrated that 1-D token-wise LLMs provide a practical tool for designing 2-D arbitrarily shaped metasurfaces. Linking natural-language interaction to electromagnetic modelling, this “chat-to-chip” workflow represents a step toward more user-friendly data-driven nanophotonics.

0403電子応用
ad
ad
Follow
ad
タイトルとURLをコピーしました