ドローンによる血液輸送の遅延削減と鮮度保持に関する新研究(Drones could cut travel delays and reduce spoilage of donated blood, new Concordia study shows)

2025-10-28 カナダ・コンコルディア大学

コンコルディア大学の研究で、ドローンを活用した血液輸送最適化モデルが提案された。献血車(bloodmobile)とドローンを統合運用する新システム「Drone-Aided Mobile Blood Collection Problem」は、交通渋滞による遅延を回避し、採血後数時間以内に必要な血液成分を処理施設へ届けることを可能にする。研究ではケベック市を対象に、13拠点の輸送ルートを実データで検証。混合整数線形計画とローリングホライズン法を用いて経路・時間・血液鮮度を同時最適化した結果、輸送時間短縮と血液品質向上を実証した。ドローンは献血車への離着陸や移動も可能で、固定インフラを必要としない柔軟な運用が特長。研究は医療物資や人道支援物流への応用にも道を開く。成果は『Computers & Operations Research』誌に掲載。

<関連情報>

ドローン支援によるモバイル血液収集問題:ローリングホライズンベースの数学的 Drone-aided mobile blood collection problem: A rolling-horizon-based matheuristic

Amirhossein Abbaszadeh, Hossein Hashemi Doulabi
Computers & Operations Research  Available online: 28 August 2025
DOI:https://doi.org/10.1016/j.cor.2025.107253

Highlights

  • A MILP model is developed for a novel drone-aided mobile blood collection problem.
  • A rolling-horizon-based matheuristic is proposed to efficiently solve the problem.
  • The performance of the proposed algorithm is evaluated through a comprehensive computational study.
  • The practical relevance of the studied problem is demonstrated using a real-world case study in Quebec City.

Abstract

This study introduces the drone-aided mobile blood collection problem, which integrates mobile blood donation vehicles with drones to improve operations related to the blood collection in urban areas. Each vehicle, carrying multiple drones, travels to several collection sites to conduct blood collection operations within a working day. Drones fly between vehicles to pick up collected blood bags and deliver them to the blood center. This collaborative framework enhances the performances of the collection system and ensures the freshness of collected blood upon arrival to the blood center. We develop a novel mixed-integer linear programming model to optimally synchronize the routes and collection schedules of mobile units and drones to ensure the timely delivery of collected blood to the blood center. We also develop a rolling-horizon-based matheuristic to solve large-scale instances of the problem. This algorithm combines a rolling horizon approach, which divides the problem into manageable subproblems solved sequentially, with a local branching technique that enhances solutions by exploring promising neighborhoods. To evaluate the algorithm’s performance, we conduct a comprehensive computational study. Our results show that the proposed algorithm not only finds better solutions than those obtained by Gurobi but also outperforms other matheuristics, including the rolling horizon, relax-and-fix, and fix-and-optimize algorithms. Finally, we demonstrate the real-life applicability of the problem through a case study in Quebec City, Canada.

1502サービスマネジメント
ad
ad
Follow
ad
タイトルとURLをコピーしました