人間の脳がコーディングを学習する仕組みを解明(Study reveals how the human brain learns to code)

2025-10-27 ジョンズ・ホプキンス大学(JHU)

Web要約 の発言:
ジョンズ・ホプキンス大学の神経科学チームは、人間の脳がプログラミングをどのように学習するかをfMRIで解析し、脳内にはすでに「コード理解の基盤」が備わっていることを明らかにした。大学生がPythonの初級講義を受講する前後で脳活動を比較したところ、学習後には**前頭頭頂ネットワーク(論理処理領域)**でコードの意味を表す神経群が活性化。一方、学習前でも、同じ神経群がプログラム内容を英語で読んだ際に反応していた。つまり、脳は言語理解や論理推論の回路を再利用してコーディングを習得していることが示唆された。研究代表Marina Bedny准教授は「脳は進化的にプログラミングに備えていないが、既存の思考回路を再構築して新しい技能を獲得できる」と述べた。成果は『Journal of Neuroscience』誌に掲載。

人間の脳がコーディングを学習する仕組みを解明(Study reveals how the human brain learns to code)Activity in the brain as students read code before and after they took a computer programming class
Image credit: Yun-Fei Liu / Johns Hopkins University.

<関連情報>

プログラミングを学ぶことは、既存の論理アルゴリズムの前頭頭頂葉集団のコードを「リサイクル」する Learning to program “recycles” preexisting frontoparietal population codes of logical algorithms

Yun-Fei Liu (劉耘非) and Marina Bedny
Journal of Neuroscience  Published:27 October 2025
DOI:https://doi.org/10.1523/JNEUROSCI.0314-25.2025

Abstract

Computer programming is a cornerstone of modern society, yet little is known about how the human brain enables this recently invented cultural skill. According to the neural recycling hypothesis, cultural skills (e.g., reading, math) repurpose preexisting neural “information maps”. Alternatively, such maps could emerge de novo during learning, as they do in artificial neural networks. Representing and manipulating logical algorithms, such as “for” loops and “if” conditionals, is key to programming. Are representations of these algorithms acquired when people learn to program? Alternatively, do they predate instruction and get “recycled”? College students (n=22, 11 females and 11 males) participated in a functional magnetic resonance imaging (fMRI) study before and after their first programming course (Python) and completed a battery of behavioral tasks. After a one-semester Python course, reading Python functions (relative to working memory control) activated an independently localized left-lateralized fronto-parietal reasoning network. This same network was already engaged by pseudocode – plain English descriptions of Python, even before the course. Critically, multivariate population codes in this fronto-parietal network distinguished “for” loops and “if” conditional algorithms, both before and after. Representational similarity analysis revealed shared information in the fronto-parietal network before and after instruction. Programming recycles preexisting representations of logical algorithms in fronto-parietal cortices, supporting the recycling framework of cultural skill acquisition.

Significance Statement Computer programming is a foundational skill in modern society, yet its neural basis remains poorly understood. The neural recycling hypothesis proposes that new cultural abilities, such as reading and math, emerge by repurposing preexisting neural representations. We tested this hypothesis in programming by tracking brain activity before and after individuals learned to code. Using fMRI, we found that a left-lateralized fronto-parietal reasoning network represents core programming algorithms (“for” loops and “if” conditionals) even before formal instruction. After learning Python, this network continued to encode these algorithms, showing consistent neural representations before and after instruction. These findings support the idea that programming recycles preexisting cognitive structures for logical reasoning, providing a neural basis for how culture builds upon biological foundations.

1601コンピュータ工学
ad
ad
Follow
ad
タイトルとURLをコピーしました