空力特性を調整可能な新型繊維(The Need for Speed)

2025-10-27 ハーバード大学

Web要約 の発言:
ハーバード大学工学・応用科学部(SEAS)の研究チームは、空気抵抗を最大20%削減できるスマートテキスタイルを開発した。この新素材は、ゴルフボール表面のように伸縮によって微細なディンプル(くぼみ)を自在に形成し、風速に応じて空力特性を変化させる。硬質織物と柔軟なニット層を熱圧着した複合構造で、格子パターンを工夫することで体に密着しても生地が締まりすぎず、逆に表面が膨らむ仕組みを実現。風洞実験と3,000回のシミュレーションにより、最適なディンプル配置を特定した。スポーツウェアだけでなく、航空宇宙・海洋構造物などへの応用も期待される。研究はKatia Bertoldi教授とConor Walsh教授の共同で行われ、『Advanced Materials』誌に掲載された。

空力特性を調整可能な新型繊維(The Need for Speed)
Dimpled metamaterial in honeycomb pattern.

dimpled metamaterial in hourglass pattern
Dimpled metamaterial in hourglass pattern.

<関連情報>

空気力学制御のための繊維メタマテリアルのプログラム可能な表面ディンプル加工 Programmable Surface Dimpling of Textile Metamaterials for Aerodynamic Control

David T. Farrell, Connor M. McCann, Antonio Elia Forte, Conor J. Walsh, Katia Bertoldi
Advanced Materials  Published: 01 July 2025
DOI:https://doi.org/10.1002/adma.202505817

Abstract

Static aerodynamic surfaces are inherently limited in their ability to adapt to dynamic velocity profiles or environmental changes, restricting their performance under variable operating conditions. This challenge is particularly pronounced in high-speed competitive sports, such as cycling and downhill skiing, where the properties of a static textile surface are mismatched with highly dynamic wind-speed profiles. Here, an textile metamaterial is introduced that is capable of variable aerodynamic profiles through a stretch-induced dimpling mechanism, even when tightly conformed to a body or object. Wind-tunnel experiments are used to characterize the variable aerodynamic performance of the dimpling mechanism, while Finite Element (FE) simulations efficiently characterize the design space to identify optimal textile metamaterial architectures. By controlling dimple size, the aerodynamic performance of the textile can be tailored for specific wind-speed ranges, resulting in an ability to modulate drag force at target wind-speeds by up to 20%. Furthermore, the potential for active control of a textiles’ aerodynamic properties is demonstrated, in which controlled stretching allows the textile to sustain optimal performance across a dynamic wind-speed profile. These findings establish a new approach to aerodynamic metamaterials, with surface dimpling and thus variable fluid-dynamic properties offering transformative applications for wearables, as well as broader opportunities for aerospace, maritime, and civil engineering systems.

0106流体工学
ad
ad
Follow
ad
タイトルとURLをコピーしました