新たな戦略でアンチモン硫化物太陽電池の性能を向上(New Strategy Boosts Sb₂S₃ Solar Cell Performance)

2025-10-22 中国科学院 (CAS)

Web要約 の発言:
中国科学院合肥物質科学研究院の王明泰・陳崇教授らは、アンチモン三硫化物(Sb₂S₃)太陽電池で世界最高の変換効率8.21%を達成した。従来、溶液法で作製したSb₂S₃素子は欠陥密度や界面不整合が多く、効率が6〜7%に留まっていた。研究チームは、分解性フェネチルアンモニウムヨウ化物(PEAI)の浸透効果を利用した全次元欠陥パッシベーション法を開発。PEAI前処理により[h k 1]配向結晶化を促し、体積・界面欠陥を抑制、Cd–IおよびSb–I結合による二重界面のエネルギー準位再構築を実現した。これによりキャリア寿命が3.7倍に延び、電荷輸送効率が向上。結果として高効率Sb₂S₃バルクヘテロ接合セルの作製に成功し、薄膜太陽電池設計の新たな指針を示した。本研究は『Advanced Energy Materials』に掲載された。

新たな戦略でアンチモン硫化物太陽電池の性能を向上(New Strategy Boosts Sb₂S₃ Solar Cell Performance)
Schematic diagram of full-dimensional defect passivation strategy, photovoltaic performance, defect passivation and band structure optimization (Image by WANG Yang)

<関連情報>

分解性PEAIを用いた全次元浸透戦略により、バルクヘテロ接合Sb 2 S 3太陽電池で8.21%の効率を実現 Full-Dimensional Penetration Strategy with Degradable PEAI Enables 8.21% Efficiency in Bulk Heterojunction Sb2S3 Solar Cells

Yang Wang, Dong Yang, Mengqi Jin, Zhiyang Wan, Wenbo Cao, Faisal Naveed, Jiajin Kuang, Chaofan Zheng, Chaoyang Wang, Junwei Chen, Yingying Dong, Mingtai Wang, Chong Chen
Advanced Energy Materials  Published: 21 July 2025
DOI:https://doi.org/10.1002/aenm.202502805

Abstract

Antimony trisulfide (Sb2S3) is a promising low-cost photovoltaic material, but practical Sb2S3 solar cells suffer from multiple defects, anisotropic transport, and interfacial energy-level mismatches, limiting power conversion efficiency (η) to 6%-7%. Herein, a degradable full-dimensional penetration passivation strategy using phenethylammonium iodide (PEAI) is proposed to synergistically address these issues. PEAI pretreatment of amorphous Sb2S3 films enables [hk1]-oriented crystallization, full-dimensional defect passivation (bulk and interfaces), and dual-interface energy-level reconstruction via Cd-I and Sb─I bonding. The PEAI reduces CdS surface energy and preferentially adsorbs on Sb2S3 (211) planes, promoting [hk1] orientation and enhancing carrier transport. Moreover, the penetrated PEAI leads to a 3.7-fold increase in carrier lifetime, verifying effective defect suppression. The resultant bulk heterojunction (BHJ) solar cells achieve a η of 8.21%, which is the highest efficiency of BHJ Sb2S3 solar cells. This work establishes a quadruple-integrated paradigm (defect passivation, orientation control, energy-level optimization, and architecture design), providing a universal roadmap for high-efficiency, sustainable photovoltaics.

0402電気応用
ad
ad
Follow
ad
タイトルとURLをコピーしました