100量子ビット超伝導プロセッサによる有限温度トポロジカルエッジモードの実証(Demonstration of finite-temperature topological edge modes with a 100-qubit superconducting processor)

2025-09-16 清華大学

清華大学の鄧東霖教授らの研究チームは、浙江大学などと共同で、100量子ビット超伝導プロセッサを用い有限温度下での対称性保護型トポロジカル端状態の実証に成功した。従来、トポロジカル端状態は零温度でのみ安定とされ、有限温度では熱励起により破壊されるのが課題だった。研究チームは無秩序導入に頼らず、「前熱化機構」を利用して熱励起との相互作用を抑制する新手法を提案。浙江大学開発の125量子ビット「天目2.0」で100ビット鎖を構成し、270層の二量子ビットゲート進化の中で長寿命かつ安定した端状態を観測した。さらに論理ベル状態の符号化にも成功し、熱励起に対する頑健性を示した。本成果は有限温度下のトポロジカル物質研究に新たな実験的道を開き、耐雑音性量子情報技術の発展に寄与すると期待される。成果は『Nature』に掲載。

<関連情報>

超伝導プロセッサ上のトポロジカルなプレサーマル強ゼロモード Topological prethermal strong zero modes on superconducting processors

Feitong Jin,Si Jiang,Xuhao Zhu,Zehang Bao,Fanhao Shen,Ke Wang,Zitian Zhu,Shibo Xu,Zixuan Song,Jiachen Chen,Ziqi Tan,Yaozu Wu,Chuanyu Zhang,Yu Gao,Ning Wang,Yiren Zou,Aosai Zhang,Tingting Li,Jiarun Zhong,Zhengyi Cui,Yihang Han,Yiyang He,Han Wang,Jia-Nan Yang,… Dong-Ling Deng
Nature  Published:27 August 2025
DOI:https://doi.org/10.1038/s41586-025-09476-z

figure 1

Abstract

Symmetry-protected topological phases1,2,3,4 cannot be described by any local order parameter and are beyond the conventional symmetry-breaking model5. They are characterized by topological boundary modes that remain stable under symmetry respecting perturbations1,2,3,4,6,7,8. In clean, gapped systems without disorder, the stability of these edge modes is restricted to the zero-temperature manifold; at finite temperatures, interactions with mobile thermal excitations lead to their decay9,10,11. Here we report the observation of a distinct type of topological edge mode12,13,14, which is protected by emergent symmetries and persists across the entire spectrum, in an array of 100 programmable superconducting qubits. Through digital quantum simulation of a one-dimensional disorder-free stabilizer Hamiltonian, we observe robust long-lived topological edge modes over up to 30 cycles for a wide range of initial states. We show that the interaction between these edge modes and bulk excitations can be suppressed by dimerizing the stabilizer strength, leading to an emergent U(1) × U(1) symmetry in the prethermal regime of the system. Furthermore, we exploit these topological edge modes as logical qubits and prepare a logical Bell state, which exhibits persistent coherence, despite the system being disorder-free and at finite temperature. Our results establish a viable digital simulation approach15,16,17,18 to experimentally study topological matter at finite temperature and demonstrate a potential route to construct long-lived, robust boundary qubits in disorder-free systems.

1601コンピュータ工学
ad
ad
Follow
ad
タイトルとURLをコピーしました