粒子濃度測定のための新しい正確な計算法を開発(NIST Researchers Develop More Accurate Formula for Measuring Particle Concentration)

2025-08-20 米国国立標準技術研究所(NIST)

NIST(米国国立標準技術研究所)の研究者は、溶液中の粒子数をより正確に測定できる新しい数式を開発した(Analytical Chemistry掲載)。従来の計算式は粒子が同一サイズであると仮定しており、実際にサイズ分布が広い場合には最大36%の誤差が生じていた。新しい数式は粒子サイズのばらつきを補正でき、誤差を1%未満に抑制可能である。検証実験では、金ナノ粒子懸濁液で従来式が約6%の過大評価を示した一方、新式は実測値にほぼ一致した。食品添加物のように粒径が大きく異なる試料では特に効果が大きい。この成果はナノ医療、食品科学、環境科学、先端製造など、正確な粒子濃度測定が不可欠な幅広い分野で活用が期待される。

<関連情報>

粒径分布から粒子数濃度を導出:理論と応用 Derivation of Particle Number Concentration from the Size Distribution: Theory and Applications

Natalia Farkas,John A. Kramar,Antonio R. Montoro Bustos,George Caceres,Monique Johnson,Matthias Roesslein,and Elijah J. Petersen
Analytical Chemistry  Published: May 16, 2025
DOI:https://doi.org/10.1021/acs.analchem.4c05990

Abstract

粒子濃度測定のための新しい正確な計算法を開発(NIST Researchers Develop More Accurate Formula for Measuring Particle Concentration)

The particle number concentration (PNC) in a suspension is a key measurand in nanotechnology. A common approach for deriving PNC is to divide the total mass concentration by the per-particle mass, calculated as density times volume. The volume is most frequently derived from the arithmetic mean diameter (AMD) of the size distribution. The harmonic mean volume (HMV) has also been used. Given a known size distribution, we show that the correct PNC is obtained by using the arithmetic mean volume (AMV). The AMD-based volume results in an overestimate in PNC that increases superlinearly with increasing coefficient of variation (CV), reaching 12% at CV = 0.2 for a normal distribution. HMV would yield a much greater overestimate, exceeding 50%. The error in the AMD-derived PNC shows only weak skew dependence, suggesting a simple approximate correction as a function of CV in the common situation where AMD and CV are known but the overall size distribution is unknown. Using published data sets of gold nanoparticles, we demonstrate an overall consistency of ±1.1% in comparing the PNC directly determined by single-particle inductively coupled plasma–mass spectrometry (spICP-MS) and the PNCs derived from AMV using size distributions independently measured by high-resolution scanning electron microscopy and spICP-MS. We further compare AMV and AMD-derived PNCs for well-characterized polystyrene nanoparticle standards, illustrating sensitivity to distributional characteristics along with common errors to avoid. Nanoparticles in environmental samples, food additives, and nanomedicines often have CVs greater than 0.3, for which uncorrected AMD-derived PNC errors can exceed 35%.

0500化学一般
ad
ad
Follow
ad
タイトルとURLをコピーしました