ナノワイヤー材料に関する革新的な製造手法の開発(Yale engineers develop breakthrough method for practical nanowire materials)

2025-08-08 イェール大学

イェール大学ショローズ研究室は、従来より100倍速く実用化可能なナノワイヤー生成法を開発した(Matter掲載)。トポロジカルナノワイヤーは量子デバイスや光電子機器に有望だが、従来は原子を一層ずつ積み重ねる手法で製造が困難だった。新手法では高圧環境下にナノキャビティを設け、加熱しつつ圧力差を利用して原子を自己組織的に移動させ、直径2.5~60nmの単結晶ナノワイヤーを形成。髪の毛の最大4万分の1という精細さで、整然とした配列を実現した。材料選択肢も拡大し、工業利用に適した高速・大量生産が可能に。台湾の研究チームとの共同でデバイス応用も進んでおり、量子計算や光電子技術に新たな道を拓く成果とされる。

<関連情報>

熱機械的エピタキシーによる一次元単結晶トポロジカルナノ材料の実現 Realizing one-dimensional single-crystalline topological nanomaterials through thermomechanical epitaxy

Naijia Liu ∙ Yi-Xiang Yang ∙ Cai Lu ∙ … ∙ Miguel B. Costa ∙ Ze Liu ∙ Jan Schroers
Matter  Published:April 24, 2025
DOI:https://doi.org/10.1016/j.matt.2025.102128

Graphical abstract

ナノワイヤー材料に関する革新的な製造手法の開発(Yale engineers develop breakthrough method for practical nanowire materials)

Progress and potential

One-dimensional (1D) topological nanomaterials hold great promise for applications in quantum and electronic devices, but their fabrication has been constrained by material limitations and scalability challenges. This study demonstrates a general method for producing high-quality, single-crystalline topological nanowires using thermomechanical epitaxy (TME), a pressure-driven diffusional growth process. TME enables wafer-scale synthesis of nanowires across a broad range of topological phases, including materials that have not previously been achieved in 1D form. Beyond experimental realization, we establish a theoretical framework that predicts material suitability for TME by correlating phase stability with pressure-induced chemical potential. This predictive capability provides a systematic approach to identifying new candidates for 1D topological nanomaterials. By broadening the accessible material space and offering precise geometric control, this work advances both the fundamental understanding and practical deployment of topological nanomaterials in next-generation technologies.

Highlights

  • TME enables wafer-scale growth of diverse topological nanowires
  • A pressure-driven diffusion process drives controlled nanowire formation
  • Theoretical framework predicts material compatibility with TME
  • TME provides a scalable and versatile method for 1D nanomaterial synthesis

Summary

Applications and characterizations of topological materials benefit from nanostructures where enhanced surface-to-volume ratios amplify topological states. However, realizing one-dimensional topological nanomaterials has been limited by existing fabrication methods. Here, we present thermomechanical epitaxy (TME)—a general technique for fabricating one-dimensional topological nanomaterials. By applying pressure on bulk topological materials against rigid nanocavities, interface diffusion drives epitaxial growth of high-quality, single-crystalline nanowires at wafer scale. As this diffusional mechanism is prevalent across general materials, it enables a versatile approach to realize one-dimensional nanomaterials from a diverse spectrum of topological phases covering topological insulators and topological semimetals and realize one-dimensional nanomaterials that have not been achieved with state-of-the-art technology. Our theoretical framework predicts materials suitable for TME by correlating phase stability with pressure-induced chemical potential. The proposed method expands the accessible space of topological nanomaterials and bolsters the potential for advancements in physical science and next-generation nanodevices.

0501セラミックス及び無機化学製品
ad
ad
Follow
ad
タイトルとURLをコピーしました