量子コンピュータの量子ビット増強を可能にするスマートアンプを開発(Smart amplifier enabler for more qubits in future quantum computers)

ad

2025-06-25 チャルマース工科大学

Chalmers大学の研究チームは、量子コンピュータの読み出しに用いる超低ノイズ増幅器を、必要なときだけ起動する「パルス駆動型スマートアンプ」として開発しました。高電子移動度トランジスタ(InP‑HEMT)を応用し、従来のアンプ比で消費電力を約10分の1に削減。これにより、冷却時の発熱を抑制し、量子ビット(qubit)のデコヒーレンスを軽減でき、より大規模な量子コンピュータ構築の可能性が広がります。制御には遺伝的プログラミング技術を使用し、僅か35ナノ秒で起動。これまで常時オンだった増幅器の問題を解決し、効率的かつ高速な読み出しが可能となりました。本成果は、量子コンピュータのスケーラビリティと性能向上に寄与すると期待されます。

<関連情報>

量子ビット読み出しのためのパルスHEMT LNA動作 Pulsed HEMT LNA Operation for Qubit Readout

Yin Zeng; Jörgen Stenarson; Peter Sobis; Jan Grahn
IEEE Transactions on Microwave Theory and Techniques  Published:17 April 2025
DOI:https://doi.org/10.1109/TMTT.2025.3556982

Abstract:

Large-scale qubit readout in quantum computing systems requires highly sensitive amplification with minimal power consumption to reduce the thermal load and preserve qubit integrity. We propose a pulse-operated cryogenic low-noise amplifier (LNA) scheme that minimizes the influence of the LNA on qubit operation and reduces power consumption by duty cycling. A modified commercially available cryogenic hybrid LNA based on InP high-electron mobility transistors (HEMTs) has been characterized to demonstrate the feasibility of pulsed operation for qubit readout. The transient noise and gain performance of the LNA were obtained through a cryogenic time domain noise measurement setup with 5-ns time resolution and a measured noise standard deviation (SD) below 0.3 K. The time-domain noise and gain performance of the LNA in response to a square gate voltage waveform were investigated. Through an analysis of the LNA’s recovery limitations, we developed a fast recovery bias strategy leading to the optimization of the gate voltage waveform using a genetic algorithm (GA). This resulted in a strong enhancement of transient noise and gain performance with a recovery time of 35 ns. The drain current transients were measured to calculate the average power consumption of the pulse-operated LNA, which confirmed a reduction in average power consumption proportional to the duty cycle. This work contributes to the development of high-performance and low-power amplifier solutions critical for large-scale qubit readout applications.

1601コンピュータ工学
ad
ad
Follow
ad
タイトルとURLをコピーしました