新素材を用いた「グリーン」水素の効率的生成(More effective production of “green” hydrogen with new combined material)

2025-06-23 リンショーピング大学

新素材を用いた「グリーン」水素の効率的生成(More effective production of “green” hydrogen with new combined material)
The material can effectively capture the sunlight so that the energy therein can be used for hydrogen production through the photochemical water splitting reaction.Photographer:Olov Planthaber

スウェーデンのリンショーピング大学の研究者らは、太陽光による水分解で「グリーン水素」を効率的に生成する新素材を開発した。3層構造のこの材料(Ni(OH)₂/Co₃O₄/3C-SiC)は、太陽光を吸収し電荷を生じさせ、水を水素と酸素に分解する。従来のキュービック炭化ケイ素(3C-SiC)単体と比べ、水分解性能は8倍に向上。各層の役割を詳細に分析し、電荷の再結合を防ぐことで反応効率を高めている。研究の最終目標は、太陽光のみで10%のエネルギー変換効率を達成し、商用可能な水素生成技術を確立すること。現在市販の水素の大半は化石燃料由来の「グレー水素」であり、本研究は脱炭素社会に向けた重要な一歩である。

<関連情報>

3C-SiC光電面の二重界面工学による電子構造の操作で太陽熱水分解が促進される Manipulating Electron Structure through Dual-Interface Engineering of 3C-SiC Photoanode for Enhanced Solar Water Splitting

Hui Zeng,Satoru Yoshioka,Weimin Wang,Zhongyuan Han,Ivan G. Ivanov,Hongwei Liang,Vanya Darakchieva,and Jianwu Sun
Journal of the American Chemical Society  Published: April 17, 2025
DOI:https://doi.org/10.1021/jacs.5c04005

Abstract

Interface engineering is crucial for enhancing the efficiency of semiconductor-based solar energy devices. In this work, we report a novel dual-interface engineering strategy by designing a Ni(OH)2/Co3O4/3C-SiC photoanode that achieves remarkable enhancements in photoelectrochemical (PEC) water splitting performance. The optimized photoanode delivers a photocurrent density of 1.68 mA cm–2 at 1.23 V vs the reversible hydrogen electrode (RHE), representing an 8-fold increase compared to pristine 3C-SiC, along with excellent operational stability. In this architecture, Co3O4 serves as a highly efficient hole-extraction layer and forms a p–n junction with 3C-SiC, enhancing the separation of photogenerated electron–hole pairs. At the Ni(OH)2/Co3O4 interface, the formation of Ni–O–Co bonds facilitates rapid charge transfer and accelerates oxygen evolution reaction (OER) kinetics. The microwave photoconductivity decay (μ-PCD) measurements confirm a prolonged minority carrier lifetime, demonstrating the critical role of electronic structure modulation in improving charge separation and reducing recombination. Using advanced synchrotron radiation and X-ray absorption spectroscopy, we unveil critical modifications to the interfacial electronic structure induced by the dual-interface engineering and their roles in enhancing PEC performance. These findings establish a clear relationship between electronic structure modulation, charge carrier dynamics, and PEC performance, providing new insights into interface design strategies for highly efficient solar-driven water splitting systems.

0500化学一般
ad
ad
Follow
ad
タイトルとURLをコピーしました