ダイヤモンド中の量子特性の正確な活性化に成功(New breakthrough enables precise activation of quantum features in diamond)

ad

2025-06-16 オックスフォード大学

オックスフォード大学などの研究チームは、ダイヤモンド内に量子欠陥「スズ–vacancy色中心」をナノ精度で制御・活性化する新技術を開発。集束イオンビームで単一スズ原子を導入し、超高速レーザーとスペクトルフィードバックにより形成過程をリアルタイム観測。室温下での高精度・拡張性ある製造法を実現し、量子ネットワークや量子通信、量子計算への応用が期待される。成果は『Nature Communications』誌に掲載。

<関連情報>

ダイヤモンドにおける単一IV族色中心のレーザー活性化 Laser activation of single group-IV colour centres in diamond

Xingrui Cheng,Andreas Thurn,Guangzhao Chen,Gareth S. Jones,James E. Bennett,Maddison Coke,Mason Adshead,Cathryn P. Michaels,Osman Balci,Andrea C. Ferrari,Mete Atatüre,Richard J. Curry,Jason M. Smith,Patrick S. Salter & Dorian A. Gangloff
Nature Communications  Published:02 June 2025
DOI:https://doi.org/10.1038/s41467-025-60373-5

ダイヤモンド中の量子特性の正確な活性化に成功(New breakthrough enables precise activation of quantum features in diamond)

Abstract

Spin-photon interfaces based on group-IV colour centres in diamond offer a promising platform for quantum networks. A key challenge in the field is realising precise single-defect positioning and activation, which is crucial for scalable device fabrication. Here we address this problem by demonstrating a two-step fabrication method for tin vacancy (SnV) centres that uses site-controlled ion implantation followed by local femtosecond laser annealing with in-situ spectral monitoring. The ion implantation is performed with sub-50 nm resolution and a dosage that is controlled from hundreds of ions down to single ions per site, limited by Poissonian statistics. Using this approach, we successfully demonstrate site-selective creation and modification of single SnV centres. Our in-situ spectral monitoring opens a window onto materials tuning at the single defect level, and provides new insight into defect structures and dynamics during the annealing process. While demonstrated for SnV centres, this versatile approach can be readily generalised to other implanted colour centres in diamond and wide-bandgap materials.

1601コンピュータ工学
ad
ad
Follow
ad
タイトルとURLをコピーしました