光信号処理で6G通信を変革するフォトニックプロセッサ(Photonic Processor Could Streamline 6G Wireless Signal Processing)

ad

2025-06-11 マサチューセッツ工科大学(MIT)

光信号処理で6G通信を変革するフォトニックプロセッサ(Photonic Processor Could Streamline 6G Wireless Signal Processing)
This image shows an artist’s interpretation of new optical processor for an edge device, developed by MIT researchers, that performs machine learning computations at the speed of light, classifying wireless signals in a matter of nanoseconds.
Credits:Credit: Sampson Wilcox, Research Laboratory of Electronics

MITの研究チームは、6G時代の無線通信に対応した超高速・低電力な光ベースのAIプロセッサを開発しました。この「MAFT-ONN」アーキテクチャは、光学的に線形・非線形演算を行い、既存のAIアクセラレータより最大100倍の速度で信号処理が可能です。約95%の高精度で分類を実現し、エッジデバイスでのリアルタイム学習や推論にも対応。自動運転や医療分野など、即時判断が求められる応用が期待されます。CMOSプロセスで量産可能な設計で、商用化にも向いています。

<関連情報>

シャノン制限されたデータ移動を持つRFフォトニック深層学習プロセッサー RF-photonic deep learning processor with Shannon-limited data movement

Ronald Davis III, Zaijun Chen, Ryan Hamerly, and Dirk Englund
Science Advances  Published:11 Jun 2025
DOI:https://doi.org/10.1126/sciadv.adt3558

Abstract

Edholm’s law predicts exponential growth in data rate and spectrum bandwidth for communications. Owing to exponentially increasing deep neural network computing demands and the slowing of Moore’s law, new computing paradigms are required for future advanced communications like 6G. Optical neural networks (ONNs) are promising accelerators but struggle with scalability and system overhead. Here, we introduce our multiplicative analog frequency transform optical neural network (MAFT-ONN), an artificial intelligence hardware accelerator that experimentally computes fully analog deep learning on raw radio frequency (RF) signals, performing modulation classification that quickly converges to 95% accuracy. MAFT-ONN also exhibits scalability with nearly 4 million fully analog operations for MNIST digit classification. Because of the Shannon capacity–limited analog data movement, MAFT-ONN is also hundreds of times faster than traditional RF receivers.

0403電子応用
ad
ad
Follow
ad
タイトルとURLをコピーしました