Zheng Boチームが気候変動研究で進展(Zheng Bo’s team makes inroads in global climate change research)

ad

2025-06-12 清華大学

Zheng Boチームが気候変動研究で進展(Zheng Bo’s team makes inroads in global climate change research)

 

清華大学深圳国際大学院・鄭博(Zheng Bo)准教授らによる国際研究チームは、空気汚染が大気中ヒドロキシルラジカル(OH)濃度を通じてメタン(CH₄)の地球規模収支を調整するメカニズムを明らかにしました。本研究では、大気化学モデル、観測データ、化学ボックスモデルによる感度実験を組み合わせ、2005~2021年におけるCO、O₃、水蒸気、NOxなどの前駆物質変動がOHとCH₄吸収源に与える影響を分析。その結果、tropospheric O₃の増加やCO減少などによりOHが0.2–0.4%上昇し、CH₄吸収が年間1.3–2.0 Tg増加し、気候変動緩和に寄与することが示されました。特異事象(エルニーニョ、COVID‑19ロックダウン)では、逆方向の効果でCH₄吸収が一時的に低下することも確認。これらの知見は、大気汚染政策と温暖化対策を連携させるために重要で、OH濃度とCH₄予算のモニタリング・評価ツールとしても期待されます。

<関連情報>

大気汚染は世界のメタン収支の傾向と変動を調節する Air pollution modulates trends and variability of the global methane budget

Yuanhong Zhao,Bo Zheng,Marielle Saunois,Philippe Ciais,Michaela I. Hegglin,Shengmin Lu,Yifan Li & Philippe Bousquet
Nature  Published:28 May 2025
DOI:https://doi.org/10.1038/s41586-025-09004-z

Abstract

Air pollution affects climate through various complex interactions1. It perturbs the Earth’s radiative energy balance and alters the atmospheric oxidation capacity, which determines the lifetimes of short-lived climate forcers, such as methane1. A key mechanism in this dynamic is the impact of air pollutants on the hydroxyl radical (OH), the most important oxidant in the troposphere, which accounts for approximately 90% of the methane chemical sink2. However, a comprehensive quantification of the interactions between air pollutants, OH and methane over decadal timescales remains incomplete2. Here we develop an integrated observation-driven and model-driven approach to quantify how variations in key air pollutants influence the methane chemical sink and alter the methane budget. Our results indicate that, from 2005 to 2021, enhanced tropospheric ozone, increased water vapour and decreased carbon monoxide levels collectively contributed to a 1.3–2.0 Tg year−1 increase per year in the global methane sink, thereby buffering atmospheric methane growth rates. This increase in the methane sink was primarily concentrated in tropical regions and exhibited a north–south asymmetry. Periods of high methane growth were typically linked to abrupt OH level declines driven by fluctuations in air pollutants, especially during extreme events such as mega wildfires and the COVID-19 pandemic. Our study suggests a trade-off between O3 pollution control and methane removal mediated by OH and highlights the risk of increasing carbon monoxide emissions from widespread wildfires.

1702地球物理及び地球化学
ad
ad
Follow
ad
タイトルとURLをコピーしました