量子時計の精度限界を超える可能性を発見(Quantum clocks can be more accurate than expected)

ad

2025-06-10 チャルマース工科大学

Chalmers工科大学、ウィーン工科大学、マルタ大学の研究チームは、量子力学に基づく新しい時間計測モデル「リングクロック」により、エネルギー消費をほとんど増やさずに時間計測精度を指数関数的に向上できる可能性を示した。従来、「精度を2倍にするにはエネルギーも2倍必要」とされていたが、本モデルでは一つの時間基準と複数のカウンタを組み合わせることでこの制約を打破。量子時計の限界に関する常識を覆す理論であり、ナビゲーションやGPSなどの高精度計測技術への応用が期待される。

<関連情報>

精度は熱力学第二法則によって制限されない Precision is not limited by the second law of thermodynamics

Florian Meier,Yuri Minoguchi,Simon Sundelin,Tony J. G. Apollaro,Paul Erker,Simone Gasparinetti & Marcus Huber
Nature Physics  Published:02 June 2025
DOI:https://doi.org/10.1038/s41567-025-02929-2

figure 1

Abstract

Physical devices operating out of equilibrium are affected by thermal fluctuations, limiting their operational precision. This issue is particularly pronounced at microscopic and quantum scales, where its mitigation requires additional entropy dissipation. Understanding this constraint is important for both fundamental physics and technological design. Clocks, for example, need a thermodynamic flux towards equilibrium to measure time, resulting in a minimum entropy dissipation per clock tick. Although classical and quantum models often show a linear relationship between precision and dissipation, the ultimate bounds on this relationship remain unclear. Here we present an autonomous quantum many-body clock model that achieves clock precision that scales exponentially with entropy dissipation. This is enabled by coherent transport in a spin chain with tailored couplings, where dissipation is confined to a single link. The result demonstrates that coherent quantum dynamics can surpass the traditional thermodynamic precision limits, potentially guiding the development of future high-precision, low-dissipation quantum devices.

1701物理及び化学
ad
ad
Follow
ad
タイトルとURLをコピーしました