結晶構造が酸化還元触媒反応に与える影響(Crystal Morphology Controls Redox-Catalyzed Mass Transfer at Mineral-Water Interfaces)

ad

2025-05-13 パシフィック・ノースウェスト国立研究所(PNNL)

米国パシフィック・ノースウェスト国立研究所(PNNL)の研究チームは、鉱物と水の界面における酸化還元反応を通じた物質移動が、鉱物粒子の結晶形態に大きく依存することを明らかにしました。特に、鉄鉱石の一種であるヘマタイトの結晶構造が、電子移動やイオンの拡散といった反応速度に影響を与えることが示されました。この発見は、地下水の浄化や地球化学的プロセスの理解に重要な示唆を提供します。研究には、原子間力顕微鏡(AFM)や走査型電子顕微鏡(SEM)などの高度な観察技術が用いられ、鉱物表面の微細な構造が反応性に与える影響が詳細に解析されました。この成果は、環境修復や資源回収の効率化に貢献する可能性があります。

<関連情報>

鉄(II)とシュウ酸との自己触媒的相互作用から生じるヘマタイトのファセット依存的成長と溶解 Facet-dependent growth and dissolution of hematite resulting from autocatalytic interactions with Fe(ii) and oxalic acid

Sandra D. Taylor, John B. Cliff, Thomas W. Wietsma and Kevin M. Rosso
Environmental Science:Nano  Published:24 Jan 2025
DOI:https://doi.org/10.1039/D4EN01004C

結晶構造が酸化還元触媒反応に与える影響(Crystal Morphology Controls Redox-Catalyzed Mass Transfer at Mineral-Water Interfaces)

Abstract

The ability to simultaneously monitor the flux of iron atoms within the solution and solid phases can provide considerable insight into mechanisms of iron oxide mineral transformations. The autocatalytic interaction between hematite and Fe(II)-oxalate has long been of interest for its environmental and industrial relevance. In this study we take advantage of iron isotopic labelling and mass-sensitive imaging at the single particle scale to determine how changes in solution composition correlate with the morphologic evolution of faceted, micrometer-sized hematite platelets. Net dissolution is confirmed through analyses of aqueous iron chemistry, as well as by quantitative atomic force microscopy. Isotopic mapping techniques show that Fe(II) readily adsorbs to (001) and (012) surfaces in the absence of oxalate, but when oxalate is present selective dissolution of the (001) surface prevails and Fe deposition via recrystallization is not observed. Comparison between particle microtopographies following reaction with Fe(II), oxalate, and Fe(II)-oxalate show substantially different behaviors, consistent with distinct mechanisms of interaction with hematite surfaces. The extensive characterization conducted on the coupled solution/solid dynamics in this system provides new insight for distinguishing crystal growth, dissolution, and recrystallization processes.

1701物理及び化学
ad
ad
Follow
ad
タイトルとURLをコピーしました