気候変動下で加速する地球植生の成長を新たなモデリングで予測(New Modeling Framework Predicts Accelerated Global Vegetation Growth Under Climate Change)

ad

2025-05-09 中国科学院(CAS)

中国科学院新疆生態与地理研究所の研究チームは、気候変動下での植生成長を高精度に予測する新手法「GGMAOC」を開発した。このモデルは、各グリッドに複数のアルゴリズムを適用し最適な組み合わせを選ぶことで、従来より予測の不確実性を低減できる。GGMAOCを用いた解析では、北半球高緯度で2100年までに葉面積指数(LAI)が過去比最大2.25倍の増加速度になる可能性が示された。ランダムフォレスト法が特に高精度で、気候変動が植物成長条件に好影響を与える地域があることが判明。成果は気候適応戦略の科学的基盤として期待される。

<関連情報>

気候変動による地球緑化の主要因は、21世紀の歴史的期間に対して2倍以上の割合で寄与している Global Greening Major Contributed by Climate Change With More Than Two Times Rate Against the History Period During the 21th Century

Hao Zhang, Zengyun Hu, Xi Chen, Jianfeng Li, Qianqian Zhang, Xiaowei Zheng

Global Change Biology  Published: 11 March 2025

DOI:https://doi.org/10.1111/gcb.70126

気候変動下で加速する地球植生の成長を新たなモデリングで予測(New Modeling Framework Predicts Accelerated Global Vegetation Growth Under Climate Change)

ABSTRACT

Future variations of global vegetation are of paramount importance for the socio-ecological systems. However, up to now, it is still difficult to develop an approach to project the global vegetation considering the spatial heterogeneities from vegetation, climate factors, and models. Therefore, this study first proposes a novel model framework named GGMAOC (grid-by-grid; multi-algorithms; optimal combination) to construct an optimal model using six algorithms (i.e., LR: linear regression; SVR: support vector regression; RF: random forest; CNN: convolutional neural network; and LSTM: long short-term memory; transformer) based on five climatic factors (i.e., Tmp: temperature; Pre: precipitation; ET: evapotranspiration, SM: soil moisture, and CO2). The optimal model is employed to project the future changes in leaf area index (LAI) for the global and four sub-regions: the high-latitude northern hemisphere (NH), the mid-latitude NH, the tropics, and the mid-latitude southern hemisphere. Our results indicate that global LAI will continue to increase, with the greening rate expanding to 2.25 times in high-latitude NH by 2100 against the 1982–2014 period. Moreover, RF shows strong applicability in the global and NH models. In this study, we introduce an innovative model GGMAOC, which provides a new optimal model scheme for environmental and geoscientific research.

1901環境保全計画
ad
ad
Follow
ad
タイトルとURLをコピーしました