安価な超伝導材料への前進(Scientists Edge Closer to Affordable Superconductors)

ad

2025-05-05 コロンビア大学

コロンビア大学の研究チームは、二次元材料「タングステンジセレニド(WSe₂)」を用い、原子層を特定の角度で重ねることで超伝導性を誘導することに成功した。この手法は「マジックアングル超伝導」と呼ばれ、以前グラフェンで発見された現象を応用したものである。絶対零度近くまで冷却することで、電子が高速移動する超伝導状態が観測された。今回の成果は『Nature』誌に掲載され、他の二次元材料にも同様の現象が起こる可能性を示唆している。現時点では極低温が必要なため実用化には課題が残るが、将来的には電気自動車やクリーンエネルギーへの応用が期待されており、超伝導体設計への大きな前進と評価されている。

<関連情報>

5.0°ツイスト二層WSe2の超伝導性 Superconductivity in 5.0° twisted bilayer WSe2

Yinjie Guo,Jordan Pack,Joshua Swann,Luke Holtzman,Matthew Cothrine,Kenji Watanabe,Takashi Taniguchi,David G. Mandrus,Katayun Barmak,James Hone,Andrew J. Millis,Abhay Pasupathy & Cory R. Dean
Nature  Published:22 January 2025
DOI:https://doi.org/10.1038/s41586-024-08381-1

安価な超伝導材料への前進(Scientists Edge Closer to Affordable Superconductors)

Abstract

The discovery of superconductivity in twisted bilayer and trilayer graphene1,2,3,4,5 has generated tremendous interest. The key feature of these systems is an interplay between interlayer coupling and a moiré superlattice that gives rise to low-energy flat bands with strong correlations6. Flat bands can also be induced by moiré patterns in lattice-mismatched and/or twisted heterostructures of other two-dimensional materials, such as transition metal dichalcogenides (TMDs)7,8. Although a wide range of correlated phenomena have indeed been observed in moiré TMDs9,10,11,12,13,14,15,16,17,18,19, robust demonstration of superconductivity has remained absent9. Here we report superconductivity in 5.0° twisted bilayer WSe2 with a maximum critical temperature of 426 mK. The superconducting state appears in a limited region of displacement field and density that is adjacent to a metallic state with a Fermi surface reconstruction believed to arise from AFM order20. A sharp boundary is observed between the superconducting and magnetic phases at low temperature, reminiscent of spin fluctuation-mediated superconductivity21. Our results establish that moiré flat-band superconductivity extends beyond graphene structures. Material properties that are absent in graphene but intrinsic among TMDs, such as a native band gap, large spin–orbit coupling, spin-valley locking and magnetism, offer the possibility of accessing a broader superconducting parameter space than graphene-only structures.

1701物理及び化学
ad
ad
Follow
ad
タイトルとURLをコピーしました