量子コンピュータが古典的シミュレーションを超える(Quantum computer bests classical computer in simulation)

ad

2025-04-30 オークリッジ国立研究所(ORNL)

量子コンピュータが古典的シミュレーションを超える(Quantum computer bests classical computer in simulation)
Researchers compared the potential of quantum computing against classical systems such as ORNL’s Frontier supercomputer, which is housed and operated by the Oak Ridge Leadership Computing Facility. Credit: ORNL, U.S. Dept. of Energy

オークリッジ国立研究所(ORNL)とD-Wave Quantum Inc.の共同研究チームは、D-Waveのアニーリング型量子コンピュータ「Advantage2」が、磁性材料のシミュレーションにおいて、ORNLの最先端スーパーコンピュータ「Frontier」を上回る性能を示すことを確認しました。Advantage2は1,200以上の量子ビットを搭載し、フラストレート磁性体などの複雑な量子系の挙動を効率的に再現しました。この成果は、量子コンピューティングが科学的シミュレーションの加速に貢献する可能性を示すものであり、研究結果は科学誌『Science』に掲載されました。ORNLの量子科学センター(QSC)のディレクター、トラビス・ハンブル氏は、「この成果は、センシングや次世代コンピューティング技術の開発に新たな道を開く」と述べています。

<関連情報>

量子シミュレーションにおける非古典的計算 Beyond-classical computation in quantum simulation

Andrew D. King, Alberto Nocera, Marek M. Rams, Jacek Dziarmaga, […] , and Mohammad H. Amin
Science  Published:12 Mar 2025
DOI:https://doi.org/10.1126/science.ado6285

Editor’s summary

Quantum computers should be able to solve certain problems that classical computers cannot; however, at the current stage of development, imperfections in quantum computing hardware diminish this comparative advantage. King et al. contrasted the performance of their quantum annealing processor to state-of-the-art classical simulations of topical problems such as the quantum dynamics of the transverse-field Ising model. The researchers found that across a range of graph topologies, the quantum processor was able to outperform classical simulations. The results provide a challenge to classical computing, in which method improvement has in the past tempered claims of quantum advantage. —Jelena Stajic

Abstract

Quantum computers hold the promise of solving certain problems that lie beyond the reach of conventional computers. However, establishing this capability, especially for impactful and meaningful problems, remains a central challenge. Here, we show that superconducting quantum annealing processors can rapidly generate samples in close agreement with solutions of the Schrödinger equation. We demonstrate area-law scaling of entanglement in the model quench dynamics of two-, three-, and infinite-dimensional spin glasses, supporting the observed stretched-exponential scaling of effort for matrix-product-state approaches. We show that several leading approximate methods based on tensor networks and neural networks cannot achieve the same accuracy as the quantum annealer within a reasonable time frame. Thus, quantum annealers can answer questions of practical importance that may remain out of reach for classical computation.

1601コンピュータ工学
ad
ad
Follow
ad
タイトルとURLをコピーしました