銅を含まない高温超伝導酸化物を発見(NUS physicists discover a copper-free high-temperature superconducting oxide)

ad

2025-03-27 シンガポール国立大学(NUS)

銅を含まない高温超伝導酸化物を発見(NUS physicists discover a copper-free high-temperature superconducting oxide)Discoveries of superconducting oxides and their critical-temperature at ambient pressure.

シンガポール国立大学(NUS)の物理学者たちは、銅を含まない新しい高温超伝導酸化物を発見しました。この成果は、高温超伝導体の研究における重要な進展を示しています。研究チームを率いるチョウ博士は、「予測と設計通り、この非銅系超伝導酸化物は高温超伝導性を示しました」と述べています。この新しい材料の発見は、超伝導体の設計と応用における新たな可能性を開くものであり、エネルギー効率の向上や電子機器の性能向上に寄与することが期待されます。

<関連情報>

正孔ドープSmNiO2における40K付近の常圧バルク超伝導 Bulk superconductivity near 40 K in hole-doped SmNiO2 at ambient pressure

S. Lin Er Chow,Zhaoyang Luo & A. Ariando
Nature  Published:20 March 2025
DOI:https://doi.org/10.1038/s41586-025-08893-4(An unedited version)

Abstract

The discovery of superconductivity in the Ba-La-Cu-O system (the cuprate) in the 30 K range marked a significant breakthrough, which inspired extensive explorations of oxide based layered superconductors to identify electron pairing with higher critical temperatures (Tc)1. Despite recent observations of superconductivity in nickel-oxide-based compounds (the nickelates), evidence of Cooper pairing above 30 K in a system that is isostructural to the cuprates, but without copper, at ambient pressure and without lattice compression, has remained elusive2–5. Here, we report superconductivity with a Tc approaching 40 K under ambient pressure in the d9-x hole-doped, late rare-earth infinite-layer nickel oxide (Sm-Eu-Ca-Sr)NiO2 thin films with negligible lattice compression, supported by observations of a zero resistance state at 31 K and the Meissner effect. The material can be synthesized with essentially no Ruddlesden–Popper type structural defects, exhibiting ultralow resistivity of ~ 0.01 mΩ∙cm with a residual-resistivity-ratio of up to 10. Our findings demonstrate the potential of achieving high-temperature superconductivity using strongly correlated d-electron metal oxides beyond copper as the building blocks for superconductivity, offering a promising platform for further exploration and understanding of high-temperature Cooper pairing.

1700応用理学一般
ad
ad
Follow
ad
タイトルとURLをコピーしました