マイクロ波と光量子ビットの架け橋となる低ノイズ変換器を開発(Low-Noise Transducers to Bridge the Gap Between Microwave and Optical Qubits)

ad

2025-03-19 カリフォルニア工科大学(Caltech)

カリフォルニア工科大学の研究チームは、マイクロ波フォトンを光フォトンに効率的かつ低ノイズで変換するオンチップ型トランスデューサを開発しました。このデバイスは、シリコン製の微小ビームとマイクロ波共振器を組み合わせ、機械的振動を媒介として変換を実現。マイクロ波は極低温での動作が必要なのに対し、光は室温で長距離伝送が可能なため、量子コンピュータのネットワーク化に向けた重要な技術革新とされています。

<関連情報>

シリコンナノメカニクスによる量子化可能なマイクロ波から光への伝導 Quantum-enabled microwave-to-optical transduction via silicon nanomechanics

Han Zhao,William David Chen,Abhishek Kejriwal & Mohammad Mirhosseini
Nature Technology  Published:13 March 2025
DOI:https://doi.org/10.1038/s41565-025-01874-8

マイクロ波と光量子ビットの架け橋となる低ノイズ変換器を開発(Low-Noise Transducers to Bridge the Gap Between Microwave and Optical Qubits)

Abstract

An interface between microwave and optical photons offers the potential to network remote superconducting quantum processors. To preserve fragile quantum states, a microwave-to-optical transducer must operate efficiently in the quantum-enabled regime by generating less than one photon of noise referred to its input. Here we achieve these criteria using an integrated electro-optomechanical device made from crystalline silicon. Our platform eliminates the need for heterogeneous integration with piezoelectric materials by utilizing electrostatic actuation of gigahertz-frequency nanomechanical oscillators. Leveraging the ultra-low mechanical dissipation in silicon, our microwave-to-optical transducers achieve below one photon of input-referred added noise (nadd = 0.58) under continuous-wave laser drives. This demonstration of continuous quantum-enabled microwave-to-optical transduction improves the upconversion rate by about two orders of magnitude beyond the state of the art (R = 0.47–1.9 kHz). The increased transduction rate and scalable fabrication of our devices may facilitate near-term use of transducers in distributed quantum computers and quantum networks.

0403電子応用
ad
ad
Follow
ad
タイトルとURLをコピーしました