量子情報キャリアを1次元に閉じ込める磁気スイッチ (Magnetic switch traps quantum information carriers in one dimension)

ad

2025-02-19 ミシガン大学

ミシガン大学とレーゲンスブルク大学の研究チームは、量子情報のキャリアである励起子を一方向に閉じ込める磁気スイッチングの手法を発見しました。この研究では、クロム硫化物ブロミド(CrSBr)という材料が、温度や外部磁場の変化に応じて磁気秩序を変化させ、励起子の動きを制御できることが示されました。具体的には、132K(-141℃)以下では反強磁性構造を持ち、励起子を単一の層内、さらに一方向に閉じ込めることが可能です。この特性により、励起子同士の衝突が減少し、量子情報の保持時間が延長されると期待されています。この発見は、量子コンピューティングやセンシングなどの分野での応用が期待されます。

<関連情報>

磁気秩序による準1次元励起子のクーロン相関と微細構造の制御 Controlling Coulomb correlations and fine structure of quasi-one-dimensional excitons by magnetic order

M. Liebich,M. Florian,N. Nilforoushan,F. Mooshammer,A. D. Koulouklidis,L. Wittmann,K. Mosina,Z. Sofer,F. Dirnberger,M. Kira & R. Huber
Nature Materials  Published:19 February 2025
DOI:https://doi.org/10.1038/s41563-025-02120-1

量子情報キャリアを1次元に閉じ込める磁気スイッチ (Magnetic switch traps quantum information carriers in one dimension)

Abstract

Many surprising properties of quantum materials result from Coulomb correlations defining electronic quasiparticles and their interaction chains. In van der Waals layered crystals, enhanced correlations have been tailored in reduced dimensions, enabling excitons with giant binding energies and emergent phases including ferroelectric, ferromagnetic and multiferroic orders. Yet, correlation design has primarily relied on structural engineering. Here we present quantitative experiment–theory proof that excitonic correlations can be switched through magnetic order. By probing internal Rydberg-like transitions of excitons in the magnetic semiconductor CrSBr, we reveal their binding energy and a dramatic anisotropy of their quasi-one-dimensional orbitals manifesting in strong fine-structure splitting. We switch the internal structure from strongly bound, monolayer-localized states to weakly bound, interlayer-delocalized states by pushing the system from antiferromagnetic to paramagnetic phases. Our analysis connects this transition to the exciton’s spin-controlled effective quantum confinement, supported by the exciton’s dynamics. In future applications, excitons or even condensates may be interfaced with spintronics; extrinsically switchable Coulomb correlations could shape phase transitions on demand.

 

バルクのファンデルワールス層状磁石CrSBrは準1次元物質である The Bulk van der Waals Layered Magnet CrSBr is a Quasi-1D Material

Julian Klein,Benjamin Pingault,Matthias Florian,Marie-Christin Heißenbüttel,Alexander Steinhoff,Zhigang Song,Kierstin Torres,Florian Dirnberger,Jonathan B. Curtis,Mads Weile,Aubrey Penn,Thorsten Deilmann,Rami Dana,Rezlind Bushati,Jiamin Quan,Jan Luxa,Zdeněk Sofer,Andrea Alù,Vinod M. Menon,Ursula Wurstbauer,Michael Rohlfing,Prineha Narang,and Marko Lončar
ACS Nano  Published: March 16, 2023
DOI:https://doi.org/10.1021/acsnano.2c07316

Abstract

Abstract Image

Correlated quantum phenomena in one-dimensional (1D) systems that exhibit competing electronic and magnetic order are of strong interest for the study of fundamental interactions and excitations, such as Tomonaga–Luttinger liquids and topological orders and defects with properties completely different from the quasiparticles expected in their higher-dimensional counterparts. However, clean 1D electronic systems are difficult to realize experimentally, particularly for magnetically ordered systems. Here, we show that the van der Waals layered magnetic semiconductor CrSBr behaves like a quasi-1D material embedded in a magnetically ordered environment. The strong 1D electronic character originates from the Cr–S chains and the combination of weak interlayer hybridization and anisotropy in effective mass and dielectric screening, with an effective electron mass ratio of mXe/mYe ∼ 50. This extreme anisotropy experimentally manifests in strong electron–phonon and exciton–phonon interactions, a Peierls-like structural instability, and a Fano resonance from a van Hove singularity of similar strength to that of metallic carbon nanotubes. Moreover, because of the reduced dimensionality and interlayer coupling, CrSBr hosts spectrally narrow (1 meV) excitons of high binding energy and oscillator strength that inherit the 1D character. Overall, CrSBr is best understood as a stack of weakly hybridized monolayers and appears to be an experimentally attractive candidate for the study of exotic exciton and 1D-correlated many-body physics in the presence of magnetic order.

1700応用理学一般
ad
ad
Follow
ad
タイトルとURLをコピーしました