量子コンピューティングによる流体力学シミュレーションの向上(Flow Across Scales with a Quantum Computing Boost)

ad

2025-01-17 パシフィック・ノースウェスト国立研究所(PNNL)

太平洋北西国立研究所(PNNL)は、量子コンピューティングを活用して、複雑な流体力学問題のモデリングを向上させる研究を進めています。従来の計算手法が扱いにくい流体の微小スケールからマクロスケールまでを一貫して分析するため、量子アルゴリズムを適用。これにより、エネルギー効率の改善や環境システムの予測精度向上に貢献します。また、この技術は、風力発電の最適化や気候変動の理解にも応用可能です。

<関連情報>

流体力学のシミュレーションにおける量子の潜在的優位性 Potential quantum advantage for simulation of fluid dynamics

Xiangyu Li, Xiaolong Yin, Nathan Wiebe, Jaehun Chun, Gregory K. Schenter, Margaret S. Cheung, and Johannes Mülmenstädt
Physical Review Research  Published 10 January, 2025
DOI:https://doi.org/10.1103/PhysRevResearch.7.013036

量子コンピューティングによる流体力学シミュレーションの向上(Flow Across Scales with a Quantum Computing Boost)

Abstract

Numerical simulation of turbulent fluid dynamics needs to either parametrize turbulence—which introduces large uncertainties—or explicitly resolve the smallest scales—which is prohibitively expensive. Here, we provide evidence through analytic bounds and numerical studies that a potential quantum speedup can be achieved to simulate fluid dynamics using quantum computing. Specifically, we provide a lattice Boltzmann formulation of fluid dynamics for which we give evidence that low-order Carleman linearization is much more accurate than previously believed for these systems. This is achieved via a combination of reformulating the Navier-Stokes nonlinearity (υ▽·υ) to lattice-Boltzmann nonlinearity (υ2) and accurately linearizing the dynamical equations, which effectively trades nonlinearity for additional degrees of freedom that add negligible expense in the quantum solver. Based on this, we apply a quantum algorithm for simulating the Carleman-linearized lattice Boltzmann equation and provide evidence that its cost scales logarithmically with system size compared with polynomial scaling in the best known classical algorithms. In this paper, we suggest that a quantum advantage may exist for simulating fluid dynamics, paving the way for simulating nonlinear multiscale transport phenomena in a wide range of disciplines using quantum computing

0106流体工学
ad
ad
Follow
ad
タイトルとURLをコピーしました