低炭素アンモニアが農業と水素輸送にグリーンな選択肢を提供(Low-carbon ammonia offers green alternative for agriculture and hydrogen transport)

ad

2024-09-19 ロイヤルメルボルン工科大学(RMIT)

RMIT大学の研究チームは、液体金属を利用した新しいアンモニア製造法を開発し、従来のハーバー・ボッシュ法に比べて20%少ない熱と98%少ない圧力でアンモニアを生成します。銅とガリウムを触媒に使用し、これらの金属の特性を活かして効率的に反応を進め、炭素排出を大幅に削減することが可能です。この手法は、肥料生産や水素輸送における環境負荷の低減を目指し、小規模な分散型生産にも適しています。

<関連情報>

アンモニア合成用液体Cu-Ga触媒の金属移動度を解明 Unveiling metal mobility in a liquid Cu–Ga catalyst for ammonia synthesis

Karma Zuraiqi,Yichao Jin,Caiden J. Parker,Jaydon Meilak,Nastaran Meftahi,Andrew J. Christofferson,Salvy P. Russo,Michelle J. S. Spencer,Huai Yong Zhu,Lizhuo Wang,Jun Huang,Rosalie K. Hocking,Ken Chiang,Sarina Sarina & Torben Daeneke
Nature Catalysis  Published:19 September 2024
DOI:https://doi.org/10.1038/s41929-024-01219-z

低炭素アンモニアが農業と水素輸送にグリーンな選択肢を提供(Low-carbon ammonia offers green alternative for agriculture and hydrogen transport)

Abstract

The outlook for sustainable economic and ecological growth projects an ammonia economy as a key enabler to the energy transition landscape. The predominance of the Haber–Bosch process, however, as the current industrial process for producing ammonia subdues the sustainability of establishing an energy route predicated on ammonia. Here we capitalize on the inherent atomic structure of liquid metal alloys and the ability to modulate the electronic and geometric structures of liquid metal catalysts to drive the thermocatalytic synthesis of ammonia. By exploiting the mobility of the metal atoms in the liquid metal configuration and purposefully designing disordered metal catalysts, we provide insights into designing future transition metal-based catalysts that produce ammonia from gaseous nitrogen and hydrogen under mild operating conditions. The use of a molten Cu–Ga catalyst offers a dynamic metal complex with synergistic advantages that lift the activity of its constituent elements, exceeding the activity of a control Ru-based catalyst.

0505化学装置及び設備
ad
ad
Follow
ad
タイトルとURLをコピーしました