機械学習で自動車のバッテリー火災を防ぐ(Preventing car battery fires with help from machine learning)

ad

2024-08-29 アリゾナ大学

機械学習で自動車のバッテリー火災を防ぐ(Preventing car battery fires with help from machine learning)
As global demand for electric vehicles increase, as does the need for advanced safety measures in lithium-ion batteries.

アリゾナ大学の研究では、リチウムイオン電池の温度上昇を予測・防止するために、マルチフィジックスと機械学習モデルを活用する新しいフレームワークが提案されています。これは電動車両のバッテリー管理システムに統合され、過熱を防止することで安全性を向上させることが期待されます。この研究は、ドミノ効果を引き起こす「サーマルランナウェイ」と呼ばれる現象を未然に防ぐため、過去の温度データを基に未来の温度を予測するアルゴリズムを用いています。

<関連情報>

バッテリーの安全性を高める:リチウムイオン電池モジュールの熱暴走予測のためのマルチフィジックスと機械学習の統合 Advancing battery safety: Integrating multiphysics and machine learning for thermal runaway prediction in lithium-ion battery module

Basab Ranjan Das Goswami, Yasaman Abdisobbouhi, Hui Du, Farzad Mashayek, Todd A. Kingston, Vitaliy Yurkiv
Journal of Power Sources  Available online: 7 July 2024
DOI:https://doi.org/10.1016/j.jpowsour.2024.235015

Highlights

  • A multiphysics model of thermal runaway in a battery module is developed.
  • The decomposition of solid electrolyte interface is considered.
  • Machine learning was implemented to predict temperature during battery operation.
  • A modeling method was implemented to generate realistic data on EV driving behavior.

Abstract

The safety concerns associated with lithium-ion batteries (LIBs) have led to the development of a novel framework combining advanced machine learning (ML) techniques with multiphysics modeling. Herein, we report an ML framework aiming to predict the occurrence of thermal runaway (TR) in the LIB module by employing a multiphysics model that incorporates thermal, electrochemical, and degradation sub-models. The focus of this research lies in understanding the degradation phenomenon associated with the breakdown of the solid electrolyte interface (SEI) on the negative electrode, which can trigger TR. The developed multiphysics model enables the investigation of electrochemical and degradation processes within batteries under various conditions, including constant charge/discharge and driving cycles. To capture the spatio-temporal temperature change, a graph neural network (GNN) for spatial change is coupled with a Long Short-Term Memory (LSTM) network for temporal evolution to form an integrated framework. The results demonstrate the high accuracy of the ML model in predicting battery temperatures in a module based on spatial and temporal temperature data obtained from temperature sensors attached to the batteries, hence, offering a means to detect TR before it occurs by identifying potential thermal hotspots.

0402電気応用
ad
ad
Follow
ad
タイトルとURLをコピーしました