微粒子を同期させる「隠れたリズム」の発見(A hidden rhythm brings microscopic particles into unison)

2026-01-26 ノースウェスタン大学

米ノースウェスタン大学の研究チームは、微小粒子が外部からの明確な制御なしに自発的に同期運動する「隠れたリズム」の存在を発見した。研究では、液体中に浮遊するミクロサイズ粒子の運動を高精度で観測した結果、粒子間の弱い相互作用と流体力学的効果によって、集団として周期的かつ協調的な運動が自然に生じることが明らかになった。この現象は、生物の集団運動や細胞内プロセスに見られる同期現象と共通点を持ち、外部信号がなくても秩序が形成されるメカニズムを示している。今回の成果は、ソフトマター物理や非平衡系の理解を深めるだけでなく、将来的にはマイクロロボットの協調制御や新しい材料設計への応用も期待される。

<関連情報>

自励振動する同期コロイド Self-oscillating synchronematic colloids

Sergi G. Leyva,Zhengyan Zhang,Monica Olvera de la Cruz & Kyle J. M. Bishop
Nature Communications  Published:23 January 2026
DOI:https://doi.org/10.1038/s41467-026-68552-8 An unedited version of this manuscript

Abstract

Self-oscillators that sustain periodic dynamics under constant input are ubiquitous in natural and engineered systems, where their interactions enable spatiotemporal coordination among many individual units. New forms of organization can emerge when these self-oscillating units are free to move and rotate, linking their spatial arrangement and orientation with their oscillation frequencies and phases. Here, we report experiments and simulations on populations of Quincke colloids that behave as self-oscillating units characterized by position, orientation, frequency, and phase. Hydrodynamic interactions among these colloids drive temporal synchronization and spatial alignment of their phases and orientations, giving rise to a new form of collective order that we term synchronematic. Within finite-size crystalline clusters, these non-reciprocal interactions promote global synchronization and circular alignment, with a collective frequency that increases with cluster size. Using the theory of weakly coupled oscillators, we derive a reduced-order model that captures the coupled evolution of phase and orientation and explains how synchronematic order depends sensitively on the particle configuration. Our results establish Quincke colloids as a model system for active oscillatory matter and reveal fundamental principles by which synchronization, alignment, and structure co-emerge—offering a framework for designing adaptive, frequency-tunable materials.

1701物理及び化学
ad
ad
Follow
ad
タイトルとURLをコピーしました