日米ニュートリノ実験が連携(Neutrino Experiments in U.S. and Japan Join Forces)

2025-10-22 カリフォルニア工科大学(Caltech)

米国の大型ニュートリノ観測計画「DUNE(Deep Underground Neutrino Experiment)」と日本の「Hyper-Kamiokande(ハイパーカミオカンデ)」が正式に連携協定を結び、国際的な研究協力を開始した。両プロジェクトは、ニュートリノの性質を詳細に解析し、宇宙における物質と反物質の不均衡(非対称性)の起源を探るという共通の目標を持つ。協定により、データ解析手法、シミュレーション、検出器技術、理論的研究成果などを相互に共有する体制が整えられた。DUNEは米国サウスダコタ州の地下深部で長距離ビームを観測し、Hyper-Kamiokandeは岐阜県神岡町の大型水チェレンコフ検出器で超高感度観測を行う。両者の補完的データを組み合わせることで、ニュートリノ振動やCP対称性の破れに関する理解が飛躍的に進むことが期待される。Caltechをはじめとする米日両国の研究者が中心となり、将来的には国際的な標準解析基盤の確立と新しい物理発見への道を拓くとみられている。

日米ニュートリノ実験が連携(Neutrino Experiments in U.S. and Japan Join Forces)
A picture of a neutrino detection. Here, a neutrino entered from the left and interacted to produce a high-energy muon (the long prominent “line”), plus a number of other particles. The presence of the muon reveals that the incoming neutrino was of the corresponding type (muon neutrino). The two panels show the event from a top-down and side view, made possible by having detector cells run in two different directions.

<関連情報>

T2K実験とNOvA実験によるニュートリノ振動の共同解析 Joint neutrino oscillation analysis from the T2K and NOvA experiments

The NOvA Collaboration & The T2K Collaboration
Nature  Published:22 October 2025
DOI:https://doi.org/10.1038/s41586-025-09599-3

Abstract

The landmark discovery that neutrinos have mass and can change type (or flavour) as they propagate—a process called neutrino oscillation1,2,3,4,5,6—has opened up a rich array of theoretical and experimental questions being actively pursued today. Neutrino oscillation remains the most powerful experimental tool for addressing many of these questions, including whether neutrinos violate charge-parity (CP) symmetry, which has possible connections to the unexplained preponderance of matter over antimatter in the Universe7,8,9,10,11. Oscillation measurements also probe the mass-squared differences between the different neutrino mass states (Δm2), whether there are two light states and a heavier one (normal ordering) or vice versa (inverted ordering), and the structure of neutrino mass and flavour mixing12. Here we carry out the first joint analysis of datasets from NOvA13 and T2K14, the two currently operating long-baseline neutrino oscillation experiments (hundreds of kilometres of neutrino travel distance), taking advantage of our complementary experimental designs and setting new constraints on several neutrino sector parameters. This analysis provides new precision on the△m232 mass difference, finding 2.43+0.04-0.03 ×10-3eV2   in the normal ordering and –2.48+0.03-0.04×10-3eV2 in the inverted ordering, as well as a 3σ interval on δCP of [−1.38π, 0.30π] in the normal ordering and [−0.92π,−0.04π] in the inverted ordering. The data show no strong preference for either mass ordering, but notably, if inverted ordering were assumed true within the three-flavour mixing model, then our results would provide evidence of CP symmetry violation in the lepton sector.

1701物理及び化学
ad
ad
Follow
ad
タイトルとURLをコピーしました