柔軟なワイヤレスシステム向け3Dプリントアンテナアレイを開発(3D-printed antenna arrays developed for flexible wireless systems)

2025-10-20 ワシントン州立大学(WSU)

ワシントン州立大学(WSU)の研究チームは、柔軟で変形可能な無線通信システム向けに、3Dプリント技術を用いた新しいアンテナアレイを開発した。柔軟な基材上に銅ナノ粒子インクを精密に印刷し、曲げやねじれ、温度変化などの環境下でも性能を維持できる構造を実現。さらに、各アンテナ素子の位相やゲインを自動補正する「動的ビーム安定化プロセッサ(DBS)」を組み込み、変形時にも通信方向を安定的に維持できるようにした。4素子構成の試作モデルでは、変形状態でも高品質な信号送受信が確認され、ウェアラブル端末、航空機、ドローン、自動車などへの応用が期待される。研究は米国空軍研究所の支援を受け、『Journal of Micromechanics and Microengineering』誌に報告された。

柔軟なワイヤレスシステム向け3Dプリントアンテナアレイを開発(3D-printed antenna arrays developed for flexible wireless systems)
A chip-sized processor and 3D-printed antenna array developed by WSU researchers could someday lead to flexible and wearable wireless systems and improved electronic communications in a wide variety of applications (composite featuring photo courtesy of WSU and illustration by coffeemill on Adobe Stock).

<関連情報>

オンチップの迅速な洞察生成機能を備えた、動的ビーム安定化、付加印刷フレキシブルアンテナアレイ Dynamic beam-stabilized, additive-printed flexible antenna arrays with on-chip rapid insight generation

Sreeni Poolakkal,Abdullah Islam,Arpit Rao,Shrestha Bansal,Ted Dabrowski,Kalsi Kwan,Zhongxuan Wang,Amit Kumar Mishra,Julio A. Navarro,Shenqiang Ren,John D. Williams,Sudip Shekhar & Subhanshu Gupta
Nature Communications  Published:14 October 2025
DOI:https://doi.org/10.1038/s41467-025-64135-1

Abstract

Conformal phased arrays promise shape-changing properties, multiple degrees of freedom in the scan angle, and applications for edge computing, including devices for wearable, airborne, and seaborne platforms. However, they have suffered from two critical limitations. (1) Although most applications require on-the-move communication and sensing, prior conformal arrays have suffered from dynamic deformation-induced beam pointing errors. This work introduces a dynamic beam-stabilized processor capable of beam adaptation through on-chip real-time control of fundamental gain, phase, and delay for each element. (2) Prior conformal arrays have leveraged additive printing to enhance flexibility, but conventional printable inks based on silver are expensive, and those based on copper suffer from spontaneous metal oxidation that alters trace impedance and degrades beamforming performance. Instead, we leverage a low-cost copper molecular decomposition ink with  < 0.1% variation per °C across temperature and strain, and corrects any residual deformity in real-time using the dynamic beam-stabilized processor. Demonstrating unified material and physical deformation correction, our silicon-integrated dynamic beam-stabilized processor is low-power, low-area, and easily scalable due to tile-based architecture, thereby ideal for on-device implementations.

0404情報通信
ad
ad
Follow
ad
タイトルとURLをコピーしました