音波で量子情報を記録(Using Sound to Remember Quantum Information)

2025+-08-13 カリフォルニア工科大学(Caltech)

カルテックの研究チームは、超伝導量子ビットの情報を音波(フォノン)として保存し、従来より最大30倍長く保持できる量子メモリ技術を開発した。量子ビットをチップ上の機械的振動子と接続し、電気的な量子状態をギガヘルツ帯の機械振動に変換して記録・読み出す仕組み。音波は電磁波より遅く漏れにくいため、情報保持に有利であり、装置の小型化や拡張性も高い。今後は入出力速度の大幅向上が課題。成果は『Nature Physics』に掲載された。

音波で量子情報を記録(Using Sound to Remember Quantum Information)
A scanning electron microscope image highlighting a single mechanical oscillator, “tuning fork,” from the new work. The false-colored golden lines in the image indicate the location of electrodes that transfer electrical signals between the superconducting qubit and the mechanical oscillator.Credit: Omid Golami

<関連情報>

マイクロ波光子用の機械的量子メモリ A mechanical quantum memory for microwave photons

Alkım B. Bozkurt,Omid Golami,Yue Yu,Hao Tian &Mohammad Mirhosseini
Nature Physics  Published:13 August 2025
DOI:https://doi.org/10.1038/s41567-025-02975-w

Abstract

Superconducting qubits possess outstanding capabilities for processing quantum information in the microwave domain; however they have limited coherence times. An interface between photons and phonons could allow quantum information to be stored in long-lived mechanical oscillators. Here, we introduce a platform that relies on electrostatic forces in nanoscale structures to achieve strong coupling between a superconducting qubit and a nanomechanical oscillator with an energy decay time (T1) of approximately 25 ms, well beyond those achieved in integrated superconducting circuits. We use quantum operations in this system to investigate the microscopic origins of mechanical decoherence and mitigate its impact. By using two-pulse dynamical decoupling sequences, we can extend the coherence time (T2) from 64 μs to 1 ms. These findings establish that mechanical oscillators can act as quantum memories for superconducting devices, with potential future applications in quantum computing, sensing and transduction.

0403電子応用
ad
ad
Follow
ad
タイトルとURLをコピーしました